§ 12. Мореходные качества судов. Часть 1

Мореходными качествами должны обладать как гражданские суда, так и военные корабли.

Изучением этих качеств с применением математического анализа занимается специальная научная дисциплина - теория судна .

Если математическое решение вопроса невозможно, то прибегают к опыту, чтобы найти необходимую зависимость и проверить выводы теории на практике. Только после всестороннего изучения и проверки на опыте всех мореходных качеств судна приступают к его созданию.

Мореходные качества в предмете «Теория судна» изучаются в двух разделах: статике и динамике судна . Статика изучает законы равновесия плавающего судна и связанные с этим качества: плавучесть, остойчивость и непотопляемость. Динамика изучает судно в движении и рассматривает такие его качества, как управляемость, качку и ходкость.

Познакомимся с мореходными качествами судна.

Плавучестью судна называется его способность держаться на воде по определенную осадку, неся предназначенные грузы в соответствии с назначением судна.

На плавающее судно всегда действуют две силы: а) с одной стороны, силы веса , равные сумме веса самого судна и всех грузов на нем (вычисленные в тоннах); равнодействующая сил веса приложена в центре тяжести судна (ЦТ) в точке G и всегда направлена по вертикали вниз; б) с другой стороны, силы поддержания , ил и силы плавучести (выраженные в тоннах), т. е. давление воды на погруженную часть корпуса, определяемое произведением объема погруженной части корпуса на объемный вес воды, в которой судно плавает. Если эти силы выразить равнодействующей, приложенной в центре тяжести подводного объема судна в точке С, называемой центром величины (ЦВ), то эта равнодействующая при всех положениях плавающего судна всегда будет направлена по вертикали вверх (рис. 10).

Объемным водоизмещением называется объем погруженной части корпуса, выраженный в кубических метрах. Объемное водоизмещение служит мерой плавучести, а вес вытесняемой им воды называется весовым водоизмещением D) и выражается в тоннах.

По закону Архимеда вес плавающего тела равен весу объема жидкости, вытесненной этим телом,

Где у - объемный вес забортной воды, т/м 3 , принимаемый в расчетах равным 1,000 для пресной воды и 1,025 - для морской воды.

Рис. 10. Силы, действующие на плавающее судно, и точки приложения равнодействующих этих сил.


Так как вес плавающего судна Р всегда равен его весовому водоизмещению D, а их равнодействующие направлены противоположно друг другу по одной вертикали, и если обозначить координаты точки G и С по длине судна соответственно x g и х c , по ширине у g и у c и по высоте z g и z c , то условия равновесия плавающего судна можно сформулировать следующими уравнениями:

Р = D; x g = х c .

Вследствие симметрии судна относительно ДП очевидно, что точки G и С должны лежать в этой плоскости, тогда

Y g = y c = 0.

Обычно центр тяжести надводных судов G лежит выше центра величины С, в таком случае

Иногда объем подводной части корпуса удобнее выразить через главные размерения судна и коэффициент общей полноты, т. е.

Тогда весовое водоизмещение может быть представлено в виде

Если обозначить через V n полный объем корпуса до верхней палубы, при условии водонепроницаемости закрытия всех бортовых отверстий, то получим

Разность V n - V, представляющая некоторый объем водонепроницаемого корпуса выше грузовой ватерлинии, носит название запаса плавучести. При аварийном попадании воды внутрь корпуса судна увеличится его осадка, но судно останется на плаву, благодаря запасу плавучести. Таким образом, запас плавучести будет тем больше, чем больше высота надводного непроницаемого борта. Следовательно, запас плавучести является важной характеристикой судна, обеспечивающей его непотопляемость. Он выражается в процентах от нормального водоизмещения и имеет следующие минимальные значения: для речных судов 10-15%, для танкеров 10-25 %, для сухогрузных судов 30-50%, для ледоколов 80-90%, а для пассажирских судов 80-100%.


Рис. 11. Строевая по шпангоутам


Вес судна Р (весовая нагрузка) И координаты центра тяжести определяются расчетом, учитывающим вес каждой детали корпуса, механизмов, предметов оборудования, снабжения, запасов, грузов, людей, их багажа и всего находящегося на судне. Для упрощения вычислений предусматривается объединение отдельных наименований по специальности в статьи, подгруппы, группы и разделы нагрузки. Для каждого из них подсчитывается вес и статический момент.

Учитывая, что момент равнодействующей силы равен сумме моментов составляющих сил относительно той же плоскости, после суммирования по всему судну весов и статических моментов, определяют координаты центра тяжести судна G. Объемное водоизмещение, а также координаты центра величины С по длине от миделя х c и по высоте от основной линии z c определяют по теоретическому чертежу методом трапеции в табличной форме.

Для этой же цели пользуются вспомогательными кривыми, так называемыми строевыми, вычерченными также по данным теоретического чертежа.

Различают две кривые: строевую по шпангоутам и строевую по ватерлиниям.

Строевая по шпангоутам (рис. 11) характеризует распределение объема подводной части корпуса по длине судна. Она строится следующим способом. Пользуясь методом приближенных вычислений, определяют по теоретическому чертежу площади погруженной части каждого шпангоута (w). По оси абсцисс откладывают в выбранном масштабе длину судна и на нее наносят положение шпангоутов теоретического чертежа. На ординатах, восстановленных из этих точек, откладывают в определенном масштабе соответствующие площади вычисленных шпангоутов.

Концы ординат соединяют плавной кривой, которая и является строевой по шпангоутам.


Рис. 12. Строевая по ватерлиниям.


Строевая по ватерлинии (рис. 12) характеризует распределение объема подводной части корпуса по высоте судна. Для ее построения по теоретическому чертежу подсчитывают площади всех ватерлиний (5). Эти площади в избранном масштабе откладывают по соответствующим горизонталям, расположенным по осадкам судна, в соответствии с положением данной ватерлинии. Полученные точки соединяют плавной кривой, которая и является строевой по ватерлиниям.


Рис. 13. Кривая грузового размера.


Эти кривые служат следующими характеристиками:

1) площади каждой из строевых выражают в соответствующем масштабе объемное водоизмещение судна;

2) абсцисса центра тяжести площади строевой по шпангоутам, измеренная в масштабе длины судна, равна абсциссе центра величины судна х c ;

3) ордината центра тяжести площади строевой по ватерлиниям, измеренная в масштабе осадок, равна ординате центра величины судна z c . Грузовой размер представляет собой кривую (рис. 13), характеризующую объемное водоизмещение судна V в зависимости от его осадки Т. По этой кривой можно определить водоизмещение судна в зависимости от его осадки или решить обратную задачу.

Эта кривая строится в системе прямоугольных координат на основании предварительно вычисленных объемных водоизмещении по каждую ватерлинию теоретического чертежа. На оси ординат в выбранном масштабе откладывают осадки судна по каж- дую из ватерлиний и через них проводят горизонтали, на которых, также в определенном масштабе, откладывают значение водоизмещения, полученное для соответствующих ватерлиний. Концы полученных отрезков соединяют плавной кривой, которая и называется грузовым размером.

Пользуясь грузовым размером, можно определить изменение средней осадки от приема или расходования груза или по заданному водоизмещению определить осадку судна и т. п.

Остойчивостью называется способность судна противостоять, силам, вызвавшим его наклонение, и после прекращения действия этих сил возвращаться в первоначальное положение.

Наклонения судна возможны по разным причинам: от действия набегающих волн, из-за несимметричного затопления отсеков при пробоине, от перемещения грузов, давления ветра, из-за приема или расходования грузов и пр.

Наклонение судна в поперечной плоскости называют креном , а в продольной плоскости - дифферентом ; углы, образующиеся при этом, обозначают соответственно O и y,

Различают начальную остойчивость , т. е. остойчивость при малых углах крена, при которых кромка верхней палубы начинает входить в воду (но не более 15° для высокобортных надводных судов), и остойчивость при больших наклонениях .

Представим себе, что под действием внешних сил судно получило крен на угол 9 (рис. 14). Вследствие этого объем подводной части судна сохранил свою величину, но изменил форму; по правому борту в воду вошел дополнительный объем, а по левому борту равновеликий ему объем вышел из воды. Центр величины переместился из первоначального положения С в сторону крена судна, в центр тяжести нового объема - точку С 1 . При наклонном положении судна сила тяжести Р, приложенная в точке G, и сила поддержания D, приложенная в точке С, оставаясь перпендикулярными к новой ватерлинии В 1 Л 1 образуют пару сил с плечом GK, являющимся перпендикуляром, опущенным из точки G на направление сил поддержания.

Если продолжить направление силы поддержания из точки С 1 до пересечения с ее первоначальным направлением из точки С, то на малых углах крена, соответствующих условиям начальной остойчивости, эти два направления пересекутся в точке М, называемой поперечным метацентром .

Расстояние между метацентром и центром величины МС называется поперечным мета центрическим радиусом , обозначаемым р, а расстояние между точкой М и центром тяжести судна G - поперечной метацентрической высотой h 0 . На основании данных рис. 14 можно составить тождество

H 0 = p + z c - z g .

В прямоугольном треугольнике GMR угол у вершины М будет равен углу 0. По его гипотенузе и противолежащему углу можно определить катет GK, являющийся плечо м восстанавливающей судно пары GK=h 0 sin 8, а восстанавливающий момент будет равен Мвосст = DGK. Подставляя значения плеча, получим выражение

Мвосст = Dh 0 * sin 0,


Рис. 14. Силы, действующие при крене судна.


Взаимное положение точек М и G позволяет установить следующий признак, характеризующий поперечную остойчивость: если метацентр расположен выше центра тяжести, то восстанавливающий момент положителен и стремится вернуть судно в исходное положение, т. е. при накренении судно будет остойчиво, наоборот, если точка М находится ниже точки G, то при отрицательном значении h 0 момент отрицателен и будет стремиться увеличивать крен, т. е. в этом случае судно неостойчиво. Возможен случай, когда точки М и G совпадают, силы Р и D действуют по одной вертикальной прямой, пары сил не возникает, и восстанавливающий момент равен нулю: тогда судно надо считать неостойчивым, так как оно не стремится вернуться в первоначальное положение равновесия (рис. 15).

Метацентрическую высоту для характерных случаев нагрузки вычисляют в процессе проектирования судна, и она служит ме- рой остойчивости. Значение поперечной метацентрической высоты для основных типов судов лежит в пределах 0,5-1,2 м и лишь у ледоколов достигает 4,0 м.

Для увеличения поперечной остойчивости судна необходимо снижать его центр тяжести. Это чрезвычайно важный фактор всегда надо помнить, особенно при эксплуатации судна, и вести строгий учет за расходованием топлива и воды, хранящихся в междудонных цистернах.

Продольная метацентрическая высота H 0 рассчитывается аналогично поперечной, но так как ее величина, выражается в десятках или даже в сотнях метров, всегда весьма велика - от одной до полутора длин судна, то после проверочного расчета продольную остойчивость судна практически не рассчитывают, ее величина интересна только в случае определения осадки судна носом или кормой при продольных перемещениях грузов или при затоплении отсеков по длине судна.


Рис. 15. Поперечная остойчивость судна в зависимости от расположения грузов: а - положительная остойчивость; б - положение равновесия - судно неостойчиво; в - отрицательная остойчивость.


Вопросам остойчивости судна придается исключительно важное значение, и поэтому обычно, кроме всех теоретических вычислений, после постройки судна проверяют истинное положение его центра тяжести путем опытного кренования, т. е. поперечного наклонения судна путем перемещения груза определенного веса, называемого кренбалластом .

Все полученные ранее выводы, как уже упоминалось, практически справедливы при начальной остойчивости, т. е. при крене на малые углы.

При расчетах поперечной остойчивости на больших углах крена (продольные наклонения на практике не бывают большими) определяют переменные положения центра величины, метацентра, поперечного метацентрического радиуса и плеча восстанавливающего момента GK для различных углов крена судна. Такой расчет делают начиная от прямого положения через 5- 10° до того угла крена, когда восстанавливающее плечо превращается в нуль и судно приобретает отрицательную остойчивость.

По данным этого расчета для наглядного представления об остойчивости судна на больших углах крена строят диаграмму статической остойчивости (ее также называют диаграммой Рида), показывающую зависимость плеча статической остойчивости (GK) или восстанавливающего момента Мвосcт от угла крена 8 (рис. 16). На этой диаграмме по оси абсцисс откладывают углы крена, а по оси ординат - значение восстанавливающих моментов или плечи восстанавливающей пары, так как при равнообъемных наклонениях, при которых водоизмещение судна D остается постоянным, восстанавливающие моменты пропорциональны плечам остойчивости.


Рис. 16. Диаграмма статической остойчивости.


Диаграмму статической остойчивости строят для каждого характерного случая нагрузки судна, и она следующим образом характеризует остойчивость судна:

1) на всех углах, при которых кривая расположена над осью абсцисс, восстанавливающие плечи и моменты имеют положительное значение, и судно имеет положительную остойчивость. При тех углах крена, когда кривая расположена под осью абсцисс, судно будет неостойчивым;

2) максимум диаграммы определяет предельный угол крена 0 мах и предельный кренящий момент при статическом наклонении судна;

3) угол 8, при котором нисходящая ветвь кривой пересекает ось абсцисс, называется углом заката диаграммы . При этом угле крена восстанавливающее плечо становится равным нулю;

4) если на оси абсцисс отложить угол, равный 1 радиану (57,3°), и из этой точки восставить перпендикуляр до пересечения с касательной, проведенной к кривой из начала координат, то этот перпендикуляр в масштабе диаграммы будет равен начальной метацентрической высоте h 0 .

Большое влияние на остойчивость оказывают подвижные, т. е. незакрепленные, а также жидкие и сыпучие грузы, имеющие свободную (открытую) поверхность. При наклонении судна эти грузы начинают перемещаться в сторону крена и, как следствие, центр тяжести всего судна уже не будет находиться в неподвижной точке G, а начнет тоже перемещаться в ту же сторону, вызывая уменьшение плеча поперечной остойчивости, что равносильно уменьшению метацентрической высоты со всеми вытекающими из этого последствиями. Для предотвращения таких случаев все грузы на судах должны быть закреплены, а жидкие или сыпучие должны быть погружены в емкости, исключающие всякое переливание или пересыпание грузов.

При медленном действии сил, создающих кренящий момент, судно, наклоняясь, остановится тогда, когда кренящий и восстанавливающий моменты сравняются. При внезапном действии внешних сил, таких, как порыв ветра, натяжение буксира на борт, качка, бортовой залп из орудий и т. п., судно, наклоняясь, приобретает угловую скорость и даже с прекращением действия этих сил будет продолжать крениться по инерции на дополнительный угол до тех пор, пока не израсходуется вся его кинетическая энергия (живая сила) вращательного движения судна и его угловая скорость не превратится в нуль. Такое наклонение судна под действием внезапно приложенных сил называется динамическим наклонением . Если при статическом кренящем моменте судно плавает, имея лишь некоторый крен 0 СТ, то в случае динамического действия того же кренящего момента оно может опрокинуться.

При анализе динамической остойчивости для каждого водоизмещения судна строят диаграммы динамической остойчивости , ординаты которых представляют в определенном масштабе площади, образованные кривой моментов статической остойчивости для соответствующих углов крена, т. е. выражают работу восстанавливающей пары при наклонении судна на угол 0, выраженный в радианах. При вращательном движении, как известно, работа равна произведению момента на угол поворота, выраженный в радианах,

Т 1 = М kp 0.

По этой диаграмме все вопросы, связанные с определением динамической остойчивости, можно решить следующим образом (рис. 17).

Угол крена при динамически приложенном кренящем моменте можно найти, нанеся на диаграмму в том же масштабе график работы кренящей пары; абсцисса точки пересечения этих двух графиков дает искомый угол 0 ДИН.

Если в частном случае крепящий момент имеет постоянное значение, т. е. М кр = const, то работа будет выражаться

Т 2 = М kp 0.

А график будет иметь вид прямой, проходящей через начало координат.

Для того, чтобы построить эту прямую на диаграмме динамической остойчивости, необходимо отложить по оси абсцисс угол, равный радиану, и провести из полученной точки ординату. Отложив на ней в масштабе ординат величину М кр в виде отрезка Nn (рис. 17), надо провести прямую ON, которая является искомым графиком работы кренящей пары.


Рис. 17. Определение угла крена и предельного динамического наклонения по диаграмме динамической остойчивости.


На этой же диаграмме показан угол динамического наклонения 0 ДИН, определяемый как абсцисса точки пересечения обоих графиков.

С увеличением момента М кр секущая ON может занять предельное положение, обратившись во внешнюю касательную ОТ, проведенную из начала координат к диаграмме динамической остойчивости. Таким образом, абсцисса точки касания будет искодинмах мым предельным углом динамических наклонений 0 Ордината этой касательной, соответствующая радиану, выражает предельный кренящий момент при динамических наклонениях М крмах.

При плавании судно часто подвергается динамическому воздействию внешних сил. Поэтому умение определить динамический кренящий момент при решении вопроса об остойчивости судна имеет большое практическое значение.

Изучение причин гибели судов приводит к выводу, что в основном суда гибнут из-за потери остойчивости. Для ограничения потери остойчивости в соответствии с различными условиями плавания, Регистром Союза ССР разработаны Нормы остойчивости судов транспортного и промыслового флота. В этих нормах основным показателем является способность судна сохранять положительную остойчивость при совместном действии на него бортовой качки и ветра. Судно отвечает основному требованию Норм остойчивости, если при наихудшем варианте загрузки его М КР остается меньше M ОПР.

При этом минимальный опрокидывающий момент судна определяется по диаграммам статической или динамической остойчивости с учетом влияния свободной поверхности жидких грузов, бортовой качки и элементов расчета парусности судна для различных случаев нагрузки судна.

Нормами предусматривается целый ряд требований к остойчивости, например: M КР


метацентрическая высота должна иметь положительное значение, угол заката диаграммы статической остойчивости должен быть не менее 60°, а с учетом обледенения - не менее 55° и т. п. Обязательное соблюдение этих требований при всех случаях нагрузки дает право считать судно остойчивым.

Непотопляемостью судна называется его способность сохранять плавучесть и остойчивость после затопления части внутренних помещений водой, поступившей из-за борта.

Непотопляемость судна обеспечивается запасом плавучести и сохранением положительной остойчивости при частично затопленных помещениях.

Если судно получило пробоину в наружном корпусе, то количество воды Q, вливающееся через нее, характеризуется выражением


где S - площадь пробоины, м²;

G - 9,81 м/сек²

Н - отстояние центра пробоины от ватерлинии, м.

Даже при незначительной пробоине количество воды, поступающее внутрь корпуса, будет так велико, что справиться с нею отливные насосы не в состоянии. Поэтому водоотливные средства ставят на судне исходя из расчета только удаления воды, поступающей уже после заделки пробоины или через неплотности в соединениях.

Чтобы предотвратить распространение по судну воды, вливающейся в пробоину, предусматривают конструктивные мероприятия: корпус делят на отдельные отсеки водонепроницаемыми переборками и палубами . При таком делении в случае получения пробоины затопится один или несколько ограниченных отсеков, отчего увеличится осадка судна и соответственно уменьшится высота надводного борта и запас плавучести судна.

Вперед
Оглавление
Назад

Остойчивостью называется способность судна противодействовать силам, отклоняющим его от положения равновесия, и возвращаться в первоначальное положение равновесия после прекращения действия этих сил.

Полученные условия равновесия судна не являются достаточными для того, чтобы оно постоянно плавало в заданном положении относительно поверхности воды. Необходимо еще, чтобы равновесие судна было устойчивым. Свойство, которое в механике именуется устойчивостью равновесия, в теории судна принято называть остойчивостью. Таким образом, плавучесть обеспечивает условия положения равновесия судна с заданной посадкой, а остойчивость – сохранение этого положения.

Остойчивость судна меняется с увеличением угла наклонения и при некотором его значении полностью утрачивается. Поэтому представляется целесообразным исследование остойчивости судна на малых (теоретически бесконечно малых) отклонениях от положения равновесия с Θ = 0, Ψ = 0, а затем уже определять характеристики его остойчивости, их допустимые пределы при больших наклонениях.

Принято различать остойчивость судна при малых углах наклонения (начальную остойчивость) и остойчивость на больших углах наклонения .

При рассмотрении малых наклонений имеется возможность принять ряд допущений, позволяющих изучить начальную остойчивость судна в рамках линейной теории и получить простые математические зависимости ее характеристик. Остойчивость судна на больших углах наклонения изучается по уточненной нелинейной теории. Естественно, что свойство остойчивости судна единое и принятое разделение носит чисто методический характер.

При изучении остойчивости судна рассматривают его наклонения в двух взаимно перпендикулярных плоскостях – поперечной и продольной. При наклонениях судна в поперечной плоскости, определяемых углами крена, изучают его поперечную остойчивость ; при наклонениях в продольной плоскости, определяемых углами дифферента, изучают его продольную остойчивость .

Если наклонение судна происходит без значительных угловых ускорений (перекачивание жидких грузов, медленное поступление воды в отсек), то остойчивость называют статической .

В ряде случаев наклоняющие судно силы действуют внезапно, вызывая значительные угловые ускорения (шквал ветра, накат волны и т.п.). В таких случаях рассматривают динамическую остойчивость.

Остойчивость - очень важное мореходное свойство судна; вместе с плавучестью оно обеспечивает плавание судна в заданном положении относительно поверхности воды, необходимом для обеспечения хода и маневра. Уменьшение остойчивости судна может вызвать аварийный крен и дифферент, а полная потеря остойчивости - его опрокидывание.

Чтобы не допустить опасного уменьшения остойчивости судна все члены экипажа обязаны:

Всегда иметь четкое представление об остойчивости судна;

Знать причины, уменьшающие остойчивость;

Знать и уметь применять все средства и меры по поддержанию и восстановлению остойчивости.

Найдем условие, при соблюдении которого судно, плавающее в состоянии равновесия без крена и дифферента, будет обладать начальной остойчивостью. Полагаем, что грузы при наклонении судна не смещаются и ЦТ судна остается в точке, соответствующей исходному положению.


При наклонениях судна сила тяжести Р и силы плавучести γV образуют пару, момент которой определенным образом воздействует на судно. Характер этого воздействия зависит от взаимного расположения ЦТ и метацентра.

Рисунок 3.9 - Первый случай остойчивости судна

Возможны три характерных случая состояния судна для которых воздействие на него момента сил Р и γV качественно различно. Рассмотрим их на примере поперечных наклонений.

1-й случай (рисунок 3.9) - метацентр располагается выше ЦТ, т.е. z m > z g . В данном случае возможно различное расположение центра величины относительно центра тяжести.

1) В начальном положении центр величины (точка С 0), располагается ниже центра тяжести (точка G) (рисунок 3.9, а), но при наклонении центр величины смещается в сторону наклонения настолько сильно, что метацентр (точка m) располагается выше центра тяжести судна. Момент сил Р и γV стремится вернуть судно в исходное положение равновесия, и поэтому оно остойчиво. Подобное расположение точек m, G и С 0 встречается на большинстве судов.

2) В начальном положении центр величины (точка С 0), располагается выше центра тяжести (точка G) (рисунок 3.9,б). При наклонении судна возникающий момент сил Р и γV выпрямляет судно, и поэтому оно остойчиво. В данном случае, независимо от размеров смещения центра величины при наклонении, пара сил всегда стремится выпрямить судно. Это объясняется тем, что точка G лежит ниже точки С 0 . Такое низкое положение центра тяжести обеспечивающая безусловную остойчивость на судах трудно осуществить конструктивно. Такое расположение центра тяжести можно встретить в частности, на парусных яхтах.


Рисунок 3.10 - Второй и третий случай остойчивости судна

2-й случай (рисунок 3.10,а) – метацентр располагается ниже ЦТ, т.е. z m < z g . В этом случае при наклонении судна момент сил Р и γV стремится еще больше отклонить судно от исходного положения равновесия, которое, следовательно, является неустойчивым. В этом случае наклонения судно имеет отрицательный восстанавливающий момент, т.е. оно не остойчиво.

3-й случай (рисунок 3.10,б) – метацентр совпадает с ЦТ, т.е. z m = z g . В этом случае при наклонении судна силы Р и γV продолжают действовать по одной вертикали, момент их равен нулю – судно и в новом положении будет находиться в состоянии равновесия. В механике – этот случай безразличного равновесия.

С точки зрения теории судна в соответствии с определением остойчивости судна судно в 1-м случае остойчиво, а во 2 и 3-м – не остойчиво.

Итак, условием начальной остойчивости судна является расположение метацентра выше ЦТ. Судно обладает поперечной остойчивостью, если z m > z g , (3.7)

и продольной остойчивостью, если z м > z g . (3.8)

Отсюда становится ясным физический смысл метацентра. Эта точка является пределом, до которого можно поднимать центр тяжести не лишая судно положительной начальной остойчивости.

Расстояние между метацентром и ЦТ судна при Ψ = Θ = 0 называют начальной метацентрической высотой или просто метацентрической высотой. Поперечной и продольной плоскости наклонения судна отвечают соответственно поперечная h и продольная H метацентрические высоты. Очевидно, что

h = z m – z g и H = z м – z g , (3.9)

или h = z c + r – z g и H = z c + R – z g , (3.10)

h = r – α и H = R – α, 3.11)

где α = z g – z c – возвышение ЦТ над ЦВ.

Как видно h и H различаются только метацентрическими радиусами, т.к. α является одной и той же величиной.

, поэтому H значительно больше h.

α = (1 %) R, поэтому на практике считают, что H = R.


Непотопляемость судна

Непотопляемостью называется способность судна после затопления части помещений сохранять достаточную плавучесть и остойчивость. Непотопляемость, в отличие от плавучести и остойчивости, не является самостоятельным мореходным качеством судна. Непотопляемостью можно назвать свойство судна сохранять свои мореходные качества при затоплении части водонепроницаемого объема корпуса, а теорию непотопляемости можно характеризовать как теорию плавучести и остойчивости поврежденного судна.

Судно, обладающее хорошей непотопляемостью, при затоплении одного или нескольких отсеков должно, прежде всего, оставаться на плаву и обладать достаточной остойчивостью, не допускающей его опрокидывания. Кроме того, судно не должно утрачивать ходкость, которая зависит от осадки, крена и дифферента. Увеличение осадки, значительный крен и дифферент повышают сопротивление воды движению судна и ухудшают эффективность работы винтов и судовых механизмов. Судно должно также сохранять управляемость, которая при исправном рулевом устройстве зависит от крена и дифферента.

Непотопляемость является одним из элементов живучести судна, поскольку потеря непотопляемости связана с тяжелейшими последствиями – гибелью судна и людей, поэтому ее обеспечение является одной из важнейших задач, как для судостроителей, так и для экипажа. На практике непотопляемость обеспечивается на всех этапах жизни судна: судостроителями на стадиях проектирования, постройки и ремонта судна; экипажем в процессе эксплуатации неповрежденного судна; экипажем непосредственно в аварийной ситуации. Из такого подразделения следует, что непотопляемость обеспечивается тремя комплексами мероприятий:

Конструктивными мероприятиями, которые проводятся при проектировании, постройке и ремонте судна;

Организационно-техническими мероприятиями, которые являются предупредительными и проводятся во время эксплуатации судна;

Мероприятиями по борьбе за непотопляемость после аварии, направленными на борьбу с поступлением воды, восстановление остойчивости и спрямление поврежденного судна.

Конструктивные мероприятия. Эти мероприятия осуществляются на стадиях проектирования и постройки судна и сводятся к назначению таких запасов плавучести и остойчивости, чтобы при затоплении заданного числа отсеков изменение посадки и остойчивости аварийного судна не выходило из минимально допустимых пределов. Наиболее эффективным средством для использования запаса плавучести при повреждении корпуса, является деление судна на отсеки водонепроницаемыми переборками и палубами. Действительно, если судно не имеет внутреннего подразделения на отсеки, то при наличии подводной пробоины корпус заполнится водой и судно не сможет использовать запас плавучести. Деление судов на отсеки производится в соответствии с частью V “ Правил классификации и постройки морских судов” Морского Регистра Судоходства. Ватерлиния неповрежденного судна, применяемая при делении на отсеки, положение которой фиксируется в судовой документации, называется грузовой ватерлинией деления на отсеки . Ватерлиния поврежденного судна после затопления одного или нескольких отеков называется аварийной ватерлинией . Судно утрачивает запас плавучести, если аварийная ватерлиния совпадает с предельной линией погружения – линией пересечения наружной поверхности настила палубы переборок с наружной поверхностью бортовой обшивки у борта. Наибольшая длина части судна, расположенной ниже предельной линии погружения представляет собой длиной деления судна на отсеки . Под палубой переборок понимают самую верхнюю палубу, до которой доводятся поперечные водонепроницаемые переборки по всей ширине судна.

Количество воды влившейся в поврежденный отсек судна определяется с помощью коэффициента проницаемости помещения μ – отношение объема, который может быть заполнен водой при затоплении отсека, к полному теоретическому объему помещения. Регламентируются следующие коэффициенты проницаемости:

Для помещений, занятых механизмами – 0,85;

Для помещений занятых грузами или запасами – 0,6;

Для жилых помещений и помещений, занятых грузами, имеющими высокую проницаемость (порожние контейнеры и др.) – 0,95;

Для пустых и балластных цистерн – 0,98.

Важной характеристикой непотопляемости судна является предельная длина затопления , под которой понимают наибольшую длину условного отсека после затопления которого, при коэффициенте проницаемости равном 0,80, при осадке соответствующей грузовой ватерлинии деления судна на отсеки и при отсутствии исходного дифферента, аварийная ватерлиния будет касаться предельной линии погружения.

Важным конструктивным мероприятием по обеспечению непотопляемости является создание прочных и водонепроницаемых закрытий (дверей, люков, горловин), установленных по контуру водонепроницаемого отсека, которые должны хорошо работать при крене, дифференте и морском волнении. Для всех дверей скользящего и навесного типа в водонепроницаемых переборках должны быть предусмотрены индикаторы, находящиеся на ходовом мостике и показывающие их положение. Водонепроницаемость и прочность судна должна быть обеспечена не только в подводной части, но и в надводной части корпуса, так как последняя определяет запас плавучести, расходуемый при повреждении.

Для активной борьбы экипажа за непотопляемость на судне также предусматривается:

Создание судовых систем (креновой, дифферентной, водоотливной, осушительной, перекачки жидких грузов, затопления, спускной и перепускной, балластировки);

Снабжение аварийным имуществом и материалами.

Такие закрытия, системы и механизмы должны иметь соответствующую маркировку, обеспечивающую их правильное использование с максимальной эффективностью. Места сосредоточения аварийных средств называются аварийными постами . Это могут быть специальные помещения или кладовые, ящики и щиты на палубе. К таким постам могут быть выведены устройства дистанционного пуска судовых систем.

Организационно-технические мероприятия. Организационно-технические мероприятия по обеспечению непотопляемости проводятся экипажем судна в процессе эксплуатации с целью предупреждения поступления воды в отсеки, а также сохранения посадки и остойчивости судна, предотвращающих его затопление или опрокидывание. К числу таких мероприятий относятся:

Правильная организация и систематическая подготовка экипажа к борьбе за непотопляемость;

Поддержание всех технических средств борьбы за непотопляемость, аварийного снабжения в состоянии, гарантирующем возможность немедленного их использования;

Систематическое наблюдение за состоянием всех корпусных конструкций в целях проверки их износа (коррозии), замена отдельных элементов конструкций при текущем или среднем ремонте в случае превышения установленных норм износа;

Планомерная окраска корпусных конструкций;

Устранение перекосов и провисание водонепроницаемых дверей, люков и иллюминаторов, систематическое их расхаживание и поддержание всех задраивающих устройств в исправном состоянии;

Контроль забортных отверстий, особенно при доковании судна;

Строгое соблюдение инструкции по приему и расходованию жидких топлива;

Раскрепление грузов по-походному и предотвращение их перемещения при качки (особенно поперек судна);

Компенсация потерь остойчивости, вызванных обледенением судна, путем приема жидкого балласта и проведением мероприятий по удалению льда (скалывание, смывание горячей водой);

Борьба за непотопляемость. Под борьбой за непотопляемость понимается совокупность действий экипажа, направленных на поддержание и возможное восстановление запасов плавучести и остойчивости судна, а также на приведение его в положение, обеспечивающее ход и управляемость.

Борьба за непотопляемость осуществляется немедленно после получения судном повреждения и складывается из борьбы с поступающей водой, оценки его состояния и мероприятий по восстановлению остойчивости и спрямлению судна.



Борьба с поступающей водой состоит в обнаружении поступления воды внутрь судна, осуществлении возможных мероприятий по предотвращению или ограничению поступления и дальнейшего распространения забортной воды по судну, а также по ее удалению. При этом принимаются меры по восстановлению непроницаемости бортов, переборок, платформ, обеспечению герметичности аварийных отсеков. Малые пробоины, разошедшиеся швы, трещины заделывают деревянными клиньями и пробками (чопами) (рисунок 3.11). На пробоины большего размера ставят жесткий металлический пластырь или мат, придавленный щитком

Рисунок 3.11 - Деревянные клинья и пробки: Рисунок 3.12 - Прижимные болты:

а,б,в – клинья; г, д – пробки а – с откидной скобой; б, в – крючковые.

Для их крепления в комплект аварийного имущества входят специальные болты и струбцины, распорные брусья и клинья (рисунок 3.12 3.15). Заделка пробоины описанными способами является временной мерой. После откачки воды окончательное восстановление герметичности осуществляется путем бетонирования пробоины - постановки цементного ящика. Успешность заделки пробоины малого размера зависит от места их расположения (надводные или подводные), от доступности пробоины изнутри судна, от ее формы и расположения краев разорванного металла (внутрь корпуса или наружу).



Рисунок 3.13 - Металлические пластыри:


а – клапанный; б – с прижимным болтом; 1 – коробчатый корпус; 2 – ребра жесткости; 3 – гнездо для раздвижного упора; 4 – патрубки с заглушками для стержней крючковых болтов; 5 – клапан; 6 – рымы для крепления подкильных концов; 7,8 – прижимной болт с откидной скобой; 9 – гайка с ручками; 10 – прижимной диск.

Рисунок 3.14 - Металлический раздвижной упор:

1,8 – подпятники; 2,3 – гайки с рукоятками; 4 – штырь; 5 – наружная трубка; 6 – внутренняя трубка; 7 – шарнир


В смежные с аварийным отсеком помещения, вода может поступать в результате ее фильтрации через различные неплотности (нарушения герметичности переборочных сальников трубопроводов, кабелей и т.п.). В таких случаях герметичность восстанавливают конопаткой, клиньями или пробками, а сами переборки подкрепляют аварийными брусьями, чтобы предотвратить их выпучивание или разрушение.

Рисунок 3.15 - Аварийная струбцина: а – с захватами за шпангоуты швеллерного типа; б – захват для шпангоутов бульбового типа; 1 – струбцина; 2 – прижимной винт; 3 – рукоятки прижимного винта; 4 – гайка-ползун; 5 – стопорные винты; 6 – болты, скрепляющие две

планки швеллера; 7- захват


Рисунок 3.16 – Мягкие пластыри

а – учебный; 1- парусина; 2 – прошивка; 3 – ликтрос; 4 – угловые коуши; 5 – кренгельс для контрольного конца; б – шпигованный: 1 – парусиновая покрышка из двух слоев; 2 – мат шпигованный; 3 – прошивка; 4 – коуш угловой; в – облегченный: 1 – коуш угловой; 2 – ликтрос; 3 – карман для рейки; 4 – рейка распорная из трубы; 5,7 - слои парусины; 6 – войлочная прокладка; г – кальчужный: 1,2 – двойной слой парусиновой подушки; 3 – ликтрос пластыря; 4 – кольцо сетки; 5 – шайба парусиновая; 6 – ликтрос сетки

Мягкие пластыри (рисунок 3.16) являются основным средством для временной заделки пробоин, так как могут плотно прилегать по обводам корпуса судна в любом месте.

Литература: : с.36-47; : с.37-53, 112-119: : с.42-52; : с. 288-290.

Вопросы для самоконтроля:

1. Назовите главные размерения судна?

2. Дать определение мореходных характеристик судна?

3. Запас плавучести судна?

4. Дайте определение всех объемных эксплуатационных характеристик судна?

5. Нарисуйте грузовую марку и расшифруйте буквенные обозначения у гре­бенки?

6. Что называется непотопляемостью судна?

7. Какие организационно-технические мероприятия обеспечивают непотопляемость?

8. Что называется остойчивостью судна?

9. Дайте определение метацентрической высоты?

Рулевое устройство

Конструкции рулей

Современный судовой руль представляет собой вертикальное крыло с внутренними подкрепляющими ребрами, вращающееся вокруг вертикальной оси, площадь которого у морских судов составляет 1/10 - 1/60, площади погруженной части ДП (произведения длины судна на его осадку: LT).

На форму руля значительное влияние оказывает форма кормовой оконечности судна и расположение гребного винта.

По форме профиля пера рули делятся на плоские и профильные обтекаемые. Профильный руль состоит из двух выпуклых наружных оболочек, имеющих с внутренней стороны ребра и вертикальные диафрагмы, сваренных друг с другом и образующих каркас для повышения жесткости, кото­рый с обеих сторон покрыт приваренными к нему стальными листами.

Профильные рули имеют перед пластинчатыми ряд преимуществ:

Более высокое значение нормальной силы давления на руль;

Меньший момент, необходимый для поворота руля.

Кроме того, обтекаемый руль позволяет улучшить пропульсивные качества судна. Поэтому он нашел наибольшее применение.

Внутреннюю полость пера руля заполняют пористым материалом, предотвращающим попадание воды внутрь. Перо руля крепится к рудерпису вместе с ребрами (рисунок 4.1). Рудерпис отливают (или отковывают) заодно с петлями для навешивания руля на рудерпост (отливку иногда заменяют сварной конструкцией), являющийся неотъемлемой частью ахтерштевня.

Величина площади пера руля зависит от типа судна и его назначения. Для ориентировочной оценки необходимой площади руля обычно используют отношение S/LT, которое для морских транс­портных судов с одним рулем составляет 1,8-2,7, для танкеров-1,8-2,2;

для буксиров - 3-6; для судов прибрежного плавания - 2,3-3,3.

По способу соединения с корпусом и количеству опор пера пассивные рули разделяют на:

Простые (многоопорные) (рисунок 4.2, а, 6);

Полуподвесные (одноопорные - подвешенные на баллере и опертые на корпус в одной точке) (рисунок 4.2, в);

Подвесные (безопорные, подвешенные на баллере) (рисунок 4.2, г).

По положению оси баллера относительно пера различают:

Рули небалансирные (обычные), у которых ось баллера проходит вблизи передней кромки пера;

Балансирные, ось баллера у которых расположена на некотором расстоянии от передней кромки руля. Полуподвесные балансирные рули называют также полубаллансирными.

Небалансирные рули устанавливают на одновинтовых судах, полубалансирные и балансирные - на всех судах. Применение подвесных (балансирных) рулей позволяет снизить мощность рулевой машины за счет уменьшения крутящего момента, необходимого для перекладки руля.

Рисунок 4.1 - Рулевое устройство с полуподвесным балансирным обтекаемым рулем: 1 - перо руля; 2 - рудерпис; 3 - нижний опорный подшипник баллера; 4 - гельмпортовая труба; 5 - верхний опорно-упорный подшипник баллера; 6 - рулевая машина; 7 - запасный валиковый рулевой привод; 8 - баллер; 9 - нижний штырь пера руля; 10 - рудерпост

Баллер руля - это массивный вал, при помощи которого поворачивает­ся перо руля. Нижний конец баллера обычно имеет криволинейную фор­му и заканчивается лапой - фланцем, служащим для соединения баллера с пером руля болтами, что облегчает съем руля при ремонте. Иногда вместо фланцевого (применяют или конусное соединение. Крепление пера руля к баллеру и корпусу на многих типах судов имеет много общего и отличается не­значительно.


Баллер руля входит в кормовой подзор корпуса через гельмпортовую трубу, обеспечивающую непроницаемость корпуса, и имеет не менее двух опор (подшипников) по высоте. Нижняя опора распола­гается над гельмпортовой трубой и, как правило, имеет сальниковое уплотнение, препятствующее попаданию воды в корпус судна; верх­няя опора размещается непосредственно у места закрепления сектора или румпеля. Обычно верхняя опора (опорно-упорный подшипник) воспринимает массу баллера и пера руля, для чего на баллере делают кольцевой выступ.

Кроме рулей, на судах применяются подруливающие устройства. Посредством движителя, устанавливаемого в поперечном канале корпуса судна, они создают тяговое усилие в направле­нии, перпендикулярном его ДП, обеспечивают управляемость при отсутствии движения судна или при движении его на предельно ма­лых скоростях, когда обычные рулевые устройства неэффективны. В качестве движителей используются винты фиксированного или регулируемого шага, крыльчатые движители или насосы. Подруливающие устройства расположены в носовой или кормовой оконечностях, а на некоторых судах устанавливают по два таких устройства и в носовой и в кормовой оконечностях. В этом случае возможен не только разворот судна на месте, но и движение его лагом без использования главных движителей. Для улучшения управ­ляемости служат также поворотные насадки, закрепляемые на баллере, и особые балансирные рули.

Пост управления

В состав схемы управления рулевым устройством входят:

Пост управления со следя­щей электрической системой;

Электрическая передача от поста управления к электромотору.

Для дистанционного управления электрогидравлическими рулевыми машинами на судах широко применяется система управления «Аист». Совместно с гирокомпасом и рулевой машиной она обеспечивает четыре вида управления: «Автомат», «Следящий», «Простой», «Ручной».

Виды управления «Автомат», «Следящий» являются основными. При неисправности этих видов управления рулевой машиной переводят на «Простой». В случае отказа в работе дистанционной системы электрической передачи переходят на вид «Ручной».

Составными частями системы «Аист» являются пульт управления (ПУ) – авторулевой «Аист», исполнительный механизм (ИМ-1) и рулевой датчик (РД).

Основной пост управления находится в рулевой рубке у путевого компаса и репитера гирокомпаса. Штурвал или пульт управления рулем монтируют обычно на одной колонке с авторулевым агрегатом. Основным элементом электрической передачи является система контроллеров, помещенных в штурвальной колонке и связанных электропроводкой с электродвигателем основного привода в румпельном отделении.

Рулевые машины

Рулевые машины. В настоящее время широко применяются руле­вые машины двух типов - электрические и гидравлические. Управляют работой рулевых машин дистанционно из рулевой рубки, используя тросовую, валиковую, электрическую или гидравлическую передачу. На современных судах наиболее распространены две последние.

Рулевые приводы

На судах морского флота эксплуатируются разнообразные рулевые приводы, среди которых преимущественное распространение получили рулевые машины с электрическими и гид­равлическими приводами отечественного и зарубежного производства. Они обеспечивают передачу усилий рулевого двигателя к баллеру.

Среди них широко известны два основных типа приводов.

Механический секторно-румпельный привод от электромотора (рисунок 4.3) применяется на судах малого и среднего водоизмещения.

В этом приводе румпель жестко скреплен с баллером руля. Сектор, свободно насаженный на баллер, связан с румпелем при помощи пружинного амортизатора, а с рулевым двигателем - зубчатой передачей.

Перекладка руля осуществляется электромотором через сектор и румпель, а динамические нагрузки от ударов волн гасятся амортизаторами.

Рисунок 4.3 - Рулевое устройство с механическим секторно-румпельным приводом

от электромотора:

1 - ручной (аварийный) штурвальный привод; 2 - румпель; 3 - редуктор; 4 - ру­левой сектор; 5- электродвигатель; 6 - пружина, 7- баллер руля; 8- профиль­ный фигурный руль; 9 - сегмент червячного колеса и тормоза; 10 – червяк.

Схема управления секторно­-рулевой машиной с электрической передачей приведена на

рисунке 4.4


Рисунок 4.5 - Схема управления рулевым устройством с гидравлическим приводом

двухплунжерной рулевой машины:

1 - датчик положения руля; 2 - кабельная сеть; 3 - приводной электромотор маслонасоса; 4 - масляный насос; 5 - рулевая колонка; 6 - репитер положения руля; 7- приемник телемотора; 8- гидроцилинды рулевой машины; 9- баллер руля; 10 - маслопровод; 11 - регулировочная тяга обратной связи следящей системы; 12 - датчик телемотора; 13 – маслопровод.

Силовой плунжерный привод от гидроцилиндров применяют на современных судах (рисунок 4.5). В его состав входят два гидроцилиндра, маслонасос, телемотор и гидросистема.

Работа устройства осуществляется следующим образом. При вращении штурвала, размещенного в рулевой рубке, телединамический датчик поста управления формирует командный сигнал в виде давления масла, которое гидросистемой нагнетается в цилиндр теле­мотора. Под действием этого сигнала телемотор приводит в действие

рычажную систему обратной связи, которая открывает доступ сило­вого масла в один из гидроцилиндров. При этом масло под давлением насоса перепускается из одного цилиндра в другой, двигая поршень и поворачивая румпель, баллер и перо руля в нужную сторону. После этого регулировочная тяга возвращается в нулевое положение, а датчик и репитор фиксируют новое положения руля.

Чтобы давление масла в гидроцилиндрах не повышалось при ударах о перо руля сильной волны или большой льдины, гидросистема снабжена предохранительными клапанами и амортизационными пружинами.

В случае выхода из строя телемотора управление рулевой маши­ной можно осуществлять из румпельного отделения вручную.

При выходе из строя обоих масляных насосов переходят на руч­ную перекладку руля, для чего трубы гидросистемы напрямую соеди­няют с гидроцилиндрами, создавая в них давление вращением штур­вала в посту управления.

Компоновка агрегатов двухплунжерной рулевой машины с аналогич­ным принципом действия показана на рисунке 4.6. Эти машины получили наибольшее распространение на современных судах, так как они обеспе­чивают наивысший коэффициент полезного действия всего рулевого уст­ройства. В них давление рабочего масла в гидроцилиндрах непосредствен­но преобразуется сначала в поступательное движение плунжера, а затем через механическую передачу - во вращательное движение баллера руля, который жестко связан с румпелем. Необходимое давление масла и мощ­ность рулевой машины формируются радиально-поршневыми насосами переменной производительности, а раздачу его по цилиндрам осуществля­ет телемотор, который получает команду от штурвала с рулевой рубки.

  • Коэффициент использования чистой грузоподъемности судна (формула, ее пояснение и пределы изменения этого показателя).

  • В теории поперечной остойчивости рассматриваются наклонения судна, происходящие в плоскости миделя, причем внешний момент, называемый кренящим моментом, также действует в плоскости миделя.

    Не ограничиваясь пока малыми наклонениями судна (они будут рассмотрены как частный случай в разделе «Начальная остойчивость»), рассмотрим общий случай накренения судна от действия постоянного во времени внешнего кренящего момента. На практике такой кренящий момент может возникать, например, от действия постоянного по силе ветра, направление которого совпадает с поперечной плоскостью судна – плоскостью миделя. При воздействием этого кренящего момента судно имеет постоянный крен на противоположный борт, величина которого определяется силой ветра и восстанавливающим моментом со стороны судна.

    В литературе по теории судна принято совмещать на рисунке сразу два положения судна – прямое и с креном. Накрененному положению соответствует новое положение ватерлинии относительно судна, которому соответствует постоянный погруженный объем, однако, форма подводной части накрененного судна уже не обладает симметрией: правый борт погружен больше левого (Рис.1).

    Все ватерлинии, соответствующие одному значению водоизмещения судна (при постоянном весе судна) принято называть равнообъемными .

    Точное изображение на рисунке всех равнообъемных ватерлиний сопряжено с большими сложностями расчетного характера. В теории судна существует несколько методик для графического изображения равнообъемных ватерлиний. При очень малых углах крена (при бесконечно малых равнообъемных наклонениях) можно воспользоваться следствием из теоремы Л. Эйлера, согласно которому две равнообъемные ватерлинии, отличающиеся на бесконечно малый угол крена, пересекаются по прямой, проходящей через их общий центр тяжести площади (при конечных наклонениях это утверждение теряет силу, поскольку каждая ватерлиния имеет свой центр тяжести площади).

    Если отвлечься от реального распределения сил веса судна и гидростатического давления, заменив их действие сосредоточенными равнодействующими, то приходим к схеме (Рис.1). В центре тяжести судна приложена сила веса, направленная во всех случаях перпендикулярно к ватерлинии. Параллельно ей действует сила плавучести, приложенная в центре подводного объема судна – в так называемом центре величины (точка С ).

    Вследствие того, что поведение (и происхождение) этих сил не зависят друг от друга, они уже не действуют вдоль одной линии, а образуют пару сил, параллельных и перпендикулярных действующей ватерлинии В 1 Л 1 . В отношении силы веса Р можно сказать, что она остается вертикальной и перпендикулярной поверхности воды, а накрененное судно отклоняется от вертикали, и лишь условность рисунка требует отклонять вектор силы веса от диаметральной плоскости. Специфику такого подхода легко себе уяснить, если представить ситуацию с закрепленной на судне видеокамерой, дающей на экране поверхность моря, наклоненную на угол, равный углу крена судна.

    Полученная пара сил создаёт момент, который принято называть восстанавливающим моментом . Этот момент противодействует внешнему кренящему моменту и является главным объектом внимания в теории остойчивости.

    Величина восстанавливающего момента может быть вычислена по формуле (как для любой пары сил) как произведение одной (любой из двух) силы на расстояние между ними, называемое плечом статической остойчивости :

    Формула (1) указывает на то, что и плечо и сам момент зависят от угла крена судна, т.е. представляют собой переменные (в смысле крена) величины.

    Однако, не при всех случаях направление восстанавливающего момента будет соответствовать изображению на Рис.1.

    Если центр тяжести (в результате особенностей размещения грузов по высоте судна, например, при избытке груза на палубе) оказывается довольно высоко, то может возникнуть ситуация, когда сила веса окажется справа от линии действия силы поддержания. Тогда их момент будет действовать в противоположном направлении и будет способствовать накренению судна. Вместе с внешним кренящим моментом они будут опрокидывать судно, поскольку других противодействующих моментов больше нет.

    Ясно, что в этом случае следует оценивать эту ситуацию как недопустимую, т. к. судно остойчивостью не обладает. Следовательно, при высоком положении центра тяжести судно может терять это важное мореходное качество – остойчивость.

    На морских водоизмещающих судах возможность осуществлять воздействие на остойчивость судна, «управлять» ею, предоставляется судоводителю только путем рационального размещения грузов и запасов по высоте судна, определяющих положение центра тяжести судна. Как бы то ни было, влияние членов экипажа на положение центра величины исключено, поскольку оно связано с формой подводной части корпуса, которая (при постоянном водоизмещении и осадке судна) неизменна, а при наличии крена судна изменяется без участия человека и зависит только от осадки. Влияние человека на форму корпуса заканчивается на стадии проектирования судна.

    Таким образом, очень важное для безопасности судна положение центра тяжести по высоте находится в «сфере влияния» экипажа и требует постоянного контроля посредством специальных вычислений.

    Для расчетного контроля наличия у судна «положительной» остойчивости используется понятие метацентра и начальной метацентрической высоты.

    Поперечный метацентр – это точка, являющаяся центром кривизны той траектории, по которой центр величины перемещается при накренении судна.

    Следовательно, метацентр (так же как и центр величины) является специфической точкой, поведение которой исключительно определяется лишь геометрией формы судна в подводной части и его осадкой.

    Положение метацентра, соответствующее посадке судна без крена, принято называть начальным поперечным метацентром .

    Расстояние между центром тяжести судна и начальным метацентром в конкретном варианте загрузки, измеренное в диаметральной плоскости (ДП), называется начальной поперечной метацентрической высотой .

    На рисунке видно, что чем ниже располагается центр тяжести по отношению к постоянному (для данной осадки) начальному метацентру, то тем больше будет метацентрическая высота судна, т.е. тем больше оказывается плечо восстанавливающего момента и сам этот момент.


    Таким образом, метацентрическая высота является важной характеристикой, служащей для контроля наличия у судна остойчивости. И чем больше её величина, тем больше при тех же углах крена будет величина восстанавливающего момента, т.е. противодействие судна накренению.

    При малых накренениях судна метацентр приблизительно находится на месте начального метацентра, поскольку траектория центра величины (точки С ) близка к окружности, и её радиус постоянен. Из треугольника с вершиной в метацентре вытекает полезная формула, справедливая при малых углах крена (θ <10 0 ÷12 0):

    где угол крена θ следует использовать в радианах.

    Из выражений (1) и (2) легко получить выражение:

    которое показывает, что плечо статической остойчивости и метацентрическая высота не зависят от веса судна и его водоизмещения, а представляют собой универсальные характеристики остойчивости, с помощью которых можно сравнивать остойчивость судов разных типов и размеров.


    Так для судов с высоким положением центра тяжести (лесовозы) начальная метацентрическая высота принимает значения h 0 ≈ 0 – 0,30 м, для сухогрузных судов h 0 ≈ 0 – 1,20 м, для балкеров, ледоколов, буксиров h 0 > 1,5 ÷ 4,0 м.

    Однако, метацентрическая высота отрицательных значений принимать не должна. Формула (1) позволяет сделать другие важные выводы: поскольку порядок величин восстанавливающего момента определяется в основном величиной водоизмещения судна Р , то плечо статической остойчивости является «управляющей величиной», влияющей на диапазон изменения момента М в при данном водоизмещении. И от малейших изменений l (θ) за счет неточностей его вычисления или погрешностей исходной информации (данные, снимаемые с судовых чертежей, либо замеряемые параметры на судне) существенно зависит величина момента М в , определяющего способность судна сопротивляться наклонениям, т.е. определяющего его остойчивость.

    Таким образом, начальная метацентрическая высота играет роль универсальной характеристики остойчивости , позволяющей судить о её наличии и величине безотносительно от размеров судна.

    Если проследить за механизмом остойчивости при больших углах крена, то проявятся новые особенности восстанавливающего момента.

    При произвольных поперечных наклонениях судна кривизна траектории центра величины С изменяется. Эта траектория – уже не окружность с постоянным радиусом кривизны, а является некой плоской кривой, имеющей в каждой своей точке разные значения кривизны и радиуса кривизны. Как правило, этот радиус с креном судна увеличивается и поперечный метацентр (как начало этого радиуса) выходит из диаметральной плоскости и перемещается по своей траектории, отслеживая перемещения центра величины в подводной части судна. При этом, разумеется, само понятие метацентрической высоты становится неприменимым, и лишь восстанавливающий момент (и его плечо l (θ)) остаются единственными характеристиками остойчивости судна при больших наклонениях.

    Однако, при этом начальная метацентрическая высота не теряет своей роли быть основополагающей исходной характеристикой остойчивости судна в целом, поскольку от её величины, как от некоего «коэффициента масштаба» зависит порядок величин восстанавливающего момента, т.е. её косвенное влияние на остойчивость судна на больших углах крена сохраняется.

    Итак, для контроля остойчивости судна, осуществляемого перед загрузкой, необходимо на первом этапе оценить значение начальной поперечной метацентрической высоты h 0 , пользуясь выражением:

    где z G и z M 0 – аппликаты центра тяжести и начального поперечного метацентра, соответственно, отсчитываемые от основной плоскости, в которой располагается начало связанной с судном системы координат ОХYZ (Рис. 3).

    Выражение (4) одновременно отражает степень участия судоводителя в обеспечении остойчивости. Выбирая и контролируя положение центра тяжести судна по высоте, экипаж обеспечивает остойчивость судна, а все геометрические характеристики, в частности, Z M 0 , должны быть предоставлены проектантом в виде графиков от осадки d, называемых кривыми элементов теоретического чертежа .

    Дальнейший контроль остойчивости судна производится по методике Морского Регистра судоходства (РС) или по методике Международной Морской Организации (ИМО).



    Плечо восстанавливающего момента l и сам момент М в имеют геометрическую интерпретацию в виде Диаграммы статической остойчивости (ДСО) (Рис.4). ДСО – это графическая зависимость плеча восстанавливающего момента l (θ) или самого момента М в (θ) от угла крена θ .

    Этот график, как правило, изображают для крена судна только на правый борт, поскольку вся картина при крене на левый борт для симметричного судна отличается только знаком момента М в (θ).

    Значение ДСО в теории остойчивости очень велико: это не только графическая зависимость М в (θ); ДСО содержит в себе исчерпывающую информацию о состоянии загрузки судна с точки зрения остойчивости. ДСО судна позволяет решать многие практические задачи в данном рейсе и является отчетным документом для возможности начать загрузку судна и отправку его в рейс.

    В качестве свойств ДСО можно отметить следующие:

    • ДСО конкретного судна зависит только от взаимного расположения центра тяжести судна G и начального поперечного метацентра m (или значением метацентрической высотой h 0 ) и водоизмещением Р (или осадкой d ср ) и учитывает наличие жидких грузов и запасов с помощью специальных поправок,
    • форма корпуса конкретного судна проявляется в ДСО через плечо l (θ), жестко связанное с формой обводов корпуса, которое отражает смещение центра величины С в сторону входящего в воду борта при накренении судна,.
    • метацентрическая высота h 0 , вычисленная с учетом влияния жидких грузов и запасов (см. ниже), проявляется на ДСО как тангенс угла наклона касательной к ДСО в точке θ = 0, т.е.:

    Для подтверждения правильности построения ДСО на ней делают построение: откладывают угол θ = 1 рад (57,3 0) и строят треугольник с гипотенузой, касательной к ДСО при θ = 0, и горизонтальным катетом θ = 57,3 0 . Вертикальный (противолежащий) катет должен оказаться равным метацентрической высоте h 0 в масштабе оси l (м).

    • никакие действия не могут изменить вида ДСО, кроме изменения величин исходных параметров h 0 и Р , поскольку ДСО отражает в каком-то смысле неизменную форму корпуса судна посредством величины l (θ);
    • метацентрическая высота h 0 фактически определяет вид и протяженность ДСО.

    Угол крена θ = θ 3 , при котором график ДСО пересекает ось абсцисс, называется углом заката ДСО. Угол заката θ 3 определяет только то значение угла крена, при котором сила веса и сила плавучести будут действовать вдоль одной прямой и l (θ 3) = 0. Судить об опрокидывании судна при крене

    θ = θ 3 не будет верным, поскольку опрокидывание судна начинается гораздо раньше – вскоре после преодоления максимальной точки ДСО. Точка максимума ДСО (l = l m (θ m)) свидетельствует только о максимальном удалении силы веса от силы поддержания. Однако, максимальное плечо l m и угол максимума θ m являются важными величинами при контроле остойчивости и подлежат проверке на соответствие соответствующим нормативам.

    ДСО позволяет решать многие задачи статики судна, например, определять статический угол крена судна при действии на него постоянного (независящего от крена судна) кренящего момента М кр = const. Этот угол крена может быть определен из условия равенства кренящего и восстанавливающего моментов М в (θ) = М кр . Практически эта задача решается как задача по нахождению абсциссы точки пересечения графиков обоих моментов.


    Диаграмма статической остойчивости отражает возможность судна создавать восстанавливающий момент при наклонении судна. Её вид имеет строго конкретный характер, соответствующий параметрам загрузки судна только в данном рейсе (Р = Р i , h 0 = h 0 i ). Судоводитель, занимающийся на судне вопросами планирования рейса погрузки и расчетами остойчивости, обязан построить конкретную ДСО для двух состояний судна в предстоящем рейсе: с неизменным первоначальным расположением груза и при 100 % и при 10 % судовых запасов.

    Чтобы иметь возможность строить диаграммы статической остойчивости при различных сочетаниях водоизмещения и метацентрической высоты, он пользуется вспомогательными графическими материалами, имеющимися в судовой документации по проекту этого судна, например, пантокаренами, либо универсальной диаграммой статической остойчивости.

    Пантокарены поставляются на судно проектировщиком в составе информации об остойчивости и прочности для капитана. представляют собой универсальные графики для данного судна, отражающие форму его корпуса в части остойчивости.

    Пантокарены (Рис. 6) изображены в виде серии графиков (при разных углах крена (θ = 10,20,30,….70˚)) в зависимости от веса судна (или его осадки) некоторой части плеча статической остойчивости, называемой плечом остойчивости формы – l ф , θ ).


    Плечо формы – это расстояние, на которое переместится сила плавучести относительно исходного центра величины C ο при крене судна (Рис. 7). Понятно, что это смещение центра величины связано только с формой корпуса и не зависит от положения центра тяжести по высоте. Набор значений плеча формы при разных углах крена (при конкретном весе судна Р=Р i ) снимают с графиков пантокарен (Рис. 6).

    Чтобы определить плечи остойчивости l (θ) и построить диаграмму статической остойчивости в предстоящем рейсе необходимо дополнить плечи формы – плечами веса l в , которые легко рассчитать:

    Тогда ординаты будущей ДСО получаются по выражению:


    Выполнив вычисления для двух состояний нагрузки (Р зап. = 100% и 10%), строят на чистом бланке две ДСО, характеризующих остойчивость судна в этом рейсе. Остается выполнить проверку параметров остойчивости на их соответствие национальным или международным нормативам по остойчивости морских судов.

    Существует второй способ построения ДСО, использующий универсальную ДСО данного судна (зависит от наличия на судне конкретных вспомогательных материалов).

    Универсальная ДСО (Рис.6а) объединяет в себе преобразованные пантокарены для определения l ф и графики плеч веса l в (θ). Чтобы упростить вид графических зависимостей l в (θ) (см. формулу (6)) потребовалось сделать замену переменной q = sin θ , в результате синусоидальные кривые l в (θ) трансформировались в прямые линии l в (q (θ)). Но чтобы это осуществить, необходимо было принять неравномерную (синусоидальную) шкалу по оси абсцисс θ .


    На универсальной ДСО, представляемой проектантом судна, имеются оба вида графических зависимостей – l ф (Р,θ ) и l в (z G ,θ ). В связи с изменением оси абсцисс, графики плеча формы l ф уже не похожи на пантокарены, хотя заключают в себе тот же объем информации о форме корпуса, что и пантокарены.

    Для использования универсальной ДСО необходимо с помощью измерителя снять с диаграммы расстояния по вертикали между кривой l ф (θ, Р *) и кривой l в (θ, z G *) для нескольких значений угла крена судна θ = 10, 20, 30, 40 … 70 0 , что будет соответствовать применению формулы (6а). А затем на чистом бланке ДСО выстроить эти величины как ординаты будущей ДСО и соединить точки плавной линией (ось углов крена на ДСО теперь уже принимается с равномерной шкалой).

    В обоих случаях, и при использовании пантокарен, и при использовании универсальной ДСО, конечная ДСО должна получаться одинаковой.

    На универсальной ДСО иногда присутствует вспомогательная ось метацентрической высоты (справа), которая облегчает построение конкретной прямой со значением z G * : соответствующим некоторому значению метацентрической высоты h 0 * , поскольку

    Обратимся теперь к способу определения координат центра тяжести судна X G и Z G . В информации об остойчивости судна всегда можно найти координаты центра тяжести порожнего судна абсциссу x G 0 и ординату z G 0 .

    Произведения веса судна на соответствующие координаты центра тяжести называются статическими моментами водоизмещения судна относительно плоскости миделя (М х ) и основной плоскости (М z ); для порожнего судна имеем:

    Для загруженного судна эти величины можно вычислить, если суммировать соответствующие статические моменты для всех грузов, запасов в цистернах, балласта в балластных цистернах и порожнего судна:

    Для статического момента М Z необходимо добавить специальную положительную поправку, учитывающую опасное влияние свободных поверхностей жидких грузов, запасов и балласта, имеющуюся в таблицах цистерн судна, ∆М Zh :

    Эта поправка искусственно увеличивает значение статического момента, чтобы получались худшие значения метацентрической высоты, тем самым расчет ведется с запасом в безопасную сторону.

    Разделив теперь статические моменты М Х и M Z испр на полный вес судна в данном рейсе, получаем координаты центра тяжести судна по длине (X G ) и исправленную (Z G испр ), которую далее используют для вычисления исправленной метацентрической высоты h 0 испр :

    и затем – для построения ДСО. Величина Z mo (d) снимается с кривых элементов теоретического чертежа для конкретной средней осадки.

    «...Осторожней! - пискнул одноглазый капитан. Но было уже поздно. Слишком много любителей скопилось на правом борту васюкинского дредноута. Переменив центр тяжести, барка не стала колебаться и в полном соответствии с законами физики перевернулась».

    Этот эпизод из классической литературы может быть использован как наглядный пример потери остойчивости от перемещения центра тяжести из-за скопления пассажиров на одном борту. Не всегда, к сожалению, дело ограничивается забавным купанием: потеря остойчивости нередко приводит к гибели судна, а зачастую и людей, иногда - по нескольку сот человек одновременно (вспомним совсем еще недавнюю трагедию - гибель теплохода «Булгария»... - прим. ред.).

    В истории мирового судостроения зарегистрирован ряд случаев, подобных происшедшему в начале века с американским многопалубным речным пароходом «Генерал Слокам». Его конструкторы предусмотрели все для удобства пассажиров, но не проверили, как будет судно вести себя, если сразу все 700 его обитателей поднимутся на верхнюю прогулочную палубу и одновременно подойдут к борту, чтобы полюбоваться открывшимся видом...

    Потеря остойчивости - одна из наиболее распространенных причин аварий малых судов. Вот почему каждый из капитанов, независимо от того, как выглядит его судно - байдарка это или, скажем, водоизмещающий катер, каждый из тех, кто отдыхает на воде, должен иметь представление о «законах физики», незнание которых дорого обошлось васюкинцам. Другими словами, о том мореходном качестве судна, которое кораблестроители называют остойчивостью.

    Остойчивость - это способность судна сопротивляться кренящему действию внешних сил и возвращаться в прямое положение после прекращения этого действия. Появился этот термин у нас в XVIII веке, когда Россия стала морской державой; по происхождению и по смыслу он является разновидностью распространенного слова «устойчивость».

    С устойчивостью равновесия мы постоянно сталкиваемся в быту. Для нас не секрет, что стул опрокинуть легче, чем диван; а пустой шкаф - легче, чем заполненный книгами. Кантуя тяжелый ящик через ребро, мы сначала прикладываем наибольшее усилие, потом нам становится легче и, наконец, когда условная линия, проведенная вертикально через центр тяжести ящика, пройдет над ребром, ящик переворачивается уже сам, без нашего участия. Убедившись, что низкий широкий ящик труднее перекантовать, чем высокий и узкий, а тяжелый - труднее, чем легкий, мы можем прийти к выводу, что устойчивость тела на твердой поверхности определяется его весом и расстоянием по горизонтали от центра тяжести до края опорной плоскости - плечом рычага . Чем больше вес и плечо, тем устойчивее тело.

    Этот простой закон действителен и для плавающего судна, но здесь дело осложняется тем, что вместо твердой поверхности опорой для «переворачиваемого» судна служит вода. В принципе, как и в только что описанном случае, остойчивость судна определяется его весом и плечом - взаимным расположением точек приложения двух сил.

    Одна из них - это и есть вес, т. е. сила тяжести , приложенная в центре тяжести судна (ЦТ) и всегда направленная вертикально вниз.

    Другая - сила плавучести или сила поддержания . По закону Архимеда для плавающего судна эта сила по величине равна силе тяжести, но направлена вертикально вверх. Точка приложения равнодействующей сил поддержания и есть точка опоры судна! Находится эта точка в центре погруженного в воду объема корпуса и называется центром плавучести или центром величины (ЦВ).

    Когда судно свободно плавает в прямом положении, ЦВ всегда находится на одной вертикали с ЦТ, а действующие на судно равные и противоположно направленные силы уравновешены. Но вот на судно начали действовать кренящие силы . Это не обязательно перемещение пассажиров; это может быть порыв ветра или, если речь идет о яхте, просто давление его на паруса, крутая волна, рывок буксирного троса, центробежная сила на крутой циркуляции, подъем купальщика из воды через борт и т. п. и т. д.

    Действие момента этой кренящей силы, т. е. кренящего момента , наклоняет - кренит судно. При этом ЦТ судна положения не меняет, если, конечно, это не тот самый «васюкинский» случай и на судне нет таких грузов, которые могут переместиться в сторону наклона. Поскольку и при крене судно продолжает плавать, т. е. продолжает действовать закон Архимеда, увеличению погруженного объема со стороны входящего в воду борта соответствует равное уменьшение погруженного объема с противоположного, выходящего из воды борта. Не будем забывать: вес судна от действия кренящего момента не изменяется; следовательно, и общая величина погруженного объема должна остаться неизменной!

    Из-за этого перераспределения подводного объема положение ЦВ изменяется - он отходит в сторону накренения судна; в результате возникает момент сил поддержания, стремящийся восстановить прямое положение судна и поэтому называемый восстанавливающим моментом .

    Пока судно остойчивость сохраняет, восстанавливающий момент, возрастая по мере увеличения крена, становится равен моменту кренящему и, поскольку он направлен в противоположную сторону, полностью «парализует» его действие. Это значит, что, если величина кренящих сил больше не изменится, судно так и будет плавать с постоянным креном; если же действие кренящих сил прекратится и кренящего момента не станет, восстанавливающий момент немедленно спрямит судно.

    Обратившись к схеме 2, мы можем предположить, что величина возникающего при крене восстанавливающего момента будет тем больше, чем больше плечо - расстояние по горизонтали между новым положением ЦВ и неизменным положением ЦТ; поэтому оно и называется плечом остойчивости . Пока есть это плечо - действует восстанавливающий момент - судно сохраняет , но как только при дальнейшем нарастании крена плечо исчезнет - ЦВ окажется на одной вертикали с ЦТ, никаких дальнейших усилий для опрокидывания судна уже не потребуется, оно остойчивость потеряет - опрокинется.

    Чем дальше в сторону наклонения может уходить центр величины - чем больше плечо остойчивости, тем труднее перевернуть судно, т. е. тем оно остойчивее. Именно поэтому широкое судно всегда будет заметно остойчивее узкого. На четырехвесельном яле, имеющем ширину 1,6 м, гребцы могут вставать и ходить без особого риска, а вот на академической восьмерке шириной 0,7 м достаточно одному гребцу сильнее упереться ногой или чуть выше поднять весло, чтобы возник угрожающий крен!

    Особенно важно иметь достаточную ширину на самых малых судах. Заметно влияет на их остойчивость и полнота ватерлинии, т. е. показатель того, какую долю прямоугольника, стороны которого составлены максимальной длиной и шириной, занимает площадь действующей ватерлинии. При прочих равных условиях суда с большей полнотой ватерлинии всегда остойчивее тех, у которых ватерлинии в носу и корме острые.

    Остойчивость, особенно при малых углах наклонения, во многом зависит и от формы корпуса - от распределения объемов подводной части корпуса. Ведь, в конечном счете, остойчивость определяется не просто шириной действующей ватерлинии, а положением «точки опоры» - центра фактически погруженного объема.

    С точки зрения остойчивости наименее выгодны полукруглые сечения, по условиям ходкости часто применяемые для водоизмещающих судов; близкие к полукруглому сечения имеют корпуса гребных академических лодок, а также относительно узких и длинных катеров, не рассчитанных на глиссирование. Прямоугольное сечение обладает более высокими характеристиками начальной остойчивости; такого рода сечения делают на лодках минимальной длины - тузиках и челноках-плоскодонках. Если же раздвинуть подводные объемы к бортам за счет уменьшения осадки (и объема) в средней части, остойчивость выиграет еще больше: подобную форму имеют корпуса таких новейших универсальных малых лодок, как, например, «Спортиак» и «Дельфин».

    Идя по тому же пути, можно еще больше увеличить остойчивость, разрезав корпус вдоль - по ДП - и расставив узкие половинки на какую-то ширину. Так мы подошли к идее двухкорпусного судна, которая находит воплощение в конструкциях как тихоходных плавучих дач или надувных плотов, так и рассчитанных на рекордные скорости гоночных моторных либо парусных катамаранов.

    С увеличением углов наклона все большее значение приобретает и форма надводной части корпуса в районе, входящем в воду при крене. Наглядный пример - отсутствие остойчивости у имеющего круглое сечение бревна: при любом его «крене» - повороте вокруг оси - никакого дополнительного объема в воду не входит, форма погруженной части и положение ЦВ не изменяются, восстанавливающего момента не возникает.

    По той же причине вреден и некогда модный завал бортов на моторках. Оно и понятно: при нарастании крена ширина ватерлинии не только не увеличивается, а иногда и наоборот - уменьшается! Поэтому на резких поворотах нередко переворачивались старые «Казанки», имевшие завал бортов внутрь в и без того довольно узкой кормовой части.

    И наоборот: мерами, повышающими остойчивость, являются развал бортов и закрепление по их верхним кромкам дополнительных элементов плавучести. Объяснение простое: при крене входят в воду объемы именно там, где они нужнее всего для опоры - где они дают большое плечо. В принципе, судно с развалом шпангоутов в надводной части и с относительно узкой ходовой ватерлинией сочетает хорошие скоростные качества с высокой остойчивостью. Такую форму корпуса имели, например, старинные галеры, где, как известно, мощность «двигателя» была ограниченной, а требования к скорости и мореходности - довольно высокими. С той же целью по бортам легких казацких «чаек» привязывали над водой пучки сухого камыша.

    По сути дела тем же приемом пользуются наши туристы-парусники, прикрепляя к бортам байдарок надувные баллоны. Еще более эффективным средством повышения остойчивости байдарок при плавании под парусом служат бортовые поплавки, смонтированные на поперечинах. На ровном киле они идут над водой и не тормозят движение. Когда же давление ветра на парус накреняет байдарку-тримаран, подветренный поплавок входит в воду и служит дополнительной опорой, расположенной очень выгодно - далеко от ДП.

    Подобной же цели служат и различные бортовые наделки на глиссирующих моторных судах - були и спонсоны : они улучшают остойчивость катера или мотолодки и на стоянке и на ходу. Та же «Казанка» становится более безопасной даже при эксплуатации с «Вихрем» благодаря установке дополнительных объемов плавучести - кормовых булей, входящих в воду при явной перегрузке кормы или при крене на стоянке. При движении прямо вперед нижняя рабочая поверхность булей находится выше ходовой ватерлинии, а при опасных для «Казанки» резких поворотах эта поверхность начинает «работать»: образующаяся на ней при глиссировании гидродинамическая подъемная сила препятствует увеличению крена на циркуляции.

    Длина действующей ватерлинии , хотя и в меньшей мере, чем ширина, тоже существенно влияет на остойчивость самых малых судов. Вот показательный случай. Однажды испытывалась секционная туристская байдарка. В одноместном трехсекционном варианте лодка оказалась слишком «спортивной»: те, кто не имел опыта гребли на «академичках», неизменно опрокидывались у самого берега. Однако достаточно было добавить еще одну среднюю секцию длиной 0,8 м, как та же самая лодка становилась «спокойным» туристским судном.

    Остойчивость очень тесно связана с другим мореходным качеством судна - непотопляемостью. Подчеркнем: оба этих качества и значительной мере определяет фактическая высота надводного борта . Если надводный борт низкий, то уже при небольших углах крена палуба будет входить в воду, начнет уменьшаться ширина действующей ватерлинии, а с этого момента станет падать плечо остойчивости и восстанавливающий момент. Открытые - беспалубные лодки после входа в воду верхней кромки борта сразу заливаются и опрокидываются (именно так пострадали не искушенные в теории корабля васюкинцы!). Ясно, что чем выше надводный борт, тем больше и допустимый угол крена, критическое значение которого называют углом заливания .

    Самый наглядный показатель опасного увеличения крена и приближения к углу заливания - уменьшение надводной высоты борта со стороны крена лодки. Излишне говорить, что чем меньше лодка, тем опаснее любой крен, тем важнее каждый сантиметр фактической высоты надводного борта! Совершенно недопустимо превышение указанной изготовителем грузоподъемности лодки (перегрузка)! Представляет опасность такое расположение грузов, при котором лодка имеет крен уже в момент отхода от берега: ведь это сразу же уменьшает фактическую высоту борта и запас остойчивости вашей лодки!

    Не случайно речь идет о фактической высоте надводного борта. История «большого» судостроения знает множество случаев, когда целые и невредимые суда теряли остойчивость только из-за того, что при крене у поверхности воды случайно оказывались какие-либо открытые отверстия в борту.

    Любопытную историю рассказывает академик А. П. Крылов. Перед выходом в первое плавание 84-пушечного корабля «Кинг Джордж» (происходило это в 1782 г. в Портсмуте) его специально накренили для исправления какой-то неисправности кингстонов. Края нижнего ряда открытых орудийных портов оказались при этом на уровне лишь на 5-8 см выше поверхности воды. Старший офицер, не отдавая себе отчета в опасном положении корабля, когда именно эти 5-8 см, а не обычные 8 м, являлись фактической высотой борта, приказал вызвать команду к орудиям для подъема флага. Очевидно, матросы бежали по накрененному борту и незначительного увеличения крена оказалось достаточно, чтобы корабль лег на борт и унес на дно более 800 человек...

    Итак, необходимыми условиями остойчивости судна являются достаточные его ширина и высота борта. Внесем теперь уточнение. Дело в том, что остойчивость принято подразделять на начальную (в пределах угла крена до 10-20°) и на остойчивость при больших наклонениях . Для малых судов важны, в первую очередь, ширина и характеристики именно начальной остойчивости: до остойчивости на больших углах крена чаще всего «дело не доходит», так как угол заливания обычно лежит в пределах начальной остойчивости. Для более крупных мореходных и закрытых - запалубленных судов важнее высота надводного борта, обеспечивающая остойчивость при больших наклонениях.

    Теперь отметим еще одно совершенно очевидное и практически очень важное условие: судно тем остойчивее, чем ниже расположен его центр тяжести . Каждый знает, чему обязаны своей высокой «остойчивостью» ваньки-встаньки и неваляшки! По собственному опыту всем хорошо известно, как начинает раскачиваться любая небольшая лодка, когда в ней встают во весь рост и пытаются пройти от одной банки до другой: при увеличении высоты ЦТ (плеча) намного возрастает величина кренящего момента, хотя сам вес человека и не изменяется...

    Именно поэтому на тех же байдарках, ширина которых, как правило, находится на опасном минимальном пределе, сидеть приходится практически прямо на днище. Другой пример. Когда на ялах ставят мачту, появляется приложенная на некоторой высоте сила давления ветра на паруса; чтобы компенсировать возникающий при этом значительный кренящий момент, приходится увеличивать остойчивость тем же способом - всей команде пересаживаться с банок на днище.

    И третий пример. Редакторы сборника знакомились с довольно узкой двухместной лодкой (см. фото), спроектированной с расчетом на греблю длинными распашными веслами. Ходовые качества лодки оказались отличными, однако было и одно «но»: пока автор проекта перегонял лодку к месту испытаний, ему уже довелось перевернуться! Оказались в воде и пробовавшие лодку редакторы. Однако достаточно было понизить высоту банок на 150 мм - положение изменилось.

    Несмотря на самый строгий режим экономии веса, на те суда, к остойчивости которых предъявляются особенно жесткие требования, приходится специально для понижения ЦТ принимать «мертвый груз» - балласт . Обычно крейсерские яхты и спасательные катера несут постоянный твердый балласт, закрепляемый так низко, как только это допускает конструкция судна. (Чем ниже удается разместить балласт, тем меньше его понадобится для обеспечения определенной высоты ЦТ всего судна!) На таких судах ЦТ стараются располагать под ЦВ. Тогда максимальное значение плеча остойчивости будет достигаться при очень большом крене - вплоть до 90". Для сравнения достаточно сказать, что большинство обычных морских катеров опрокидывается уже при крене 60-75°.

    Иногда принимают временный жидкий балласт. Так, на мореходных мотолодках и катерах с килеватыми обводами днища низкую начальную остойчивость на стоянке (валкость) нередко приходится компенсировать приемом воды в специальные балластные цистерны в днищевой части, которые при движении опоражниваются автоматически.

    Очень важно, чтобы ЦТ накрененного судна оставался на своем месте: неслучайно на парусных лодках все тяжелые предметы надежно закрепляют, чтобы предотвратить их смещение. Существуют, однако, грузы, которые считаются опасными, так как могут вызвать потерю остойчивости. Это всякого рода сыпучие грузы - от зерна и соли до свежей рыбы, произвольно пересыпающиеся в сторону наклона судна. (Именно от смещения сыпучего груза - зерна - во время урагана опрокинулся и погиб в 1957 г. огромный четырехмачтовый барк «Памир» - последний большой грузовой парусник дедвейтом 4500 т!) Особую опасность представляет жидкий груз. Не будем вдаваться в глубины теории корабля, но подчеркнем, что в данном случае снижает остойчивость не столько вес переливающегося жидкого груза, сколько именно площадь его свободной поверхности .

    Как же, спросит читатель, плавают тогда по морям и океанам танкеры, перевозящие этот опасный жидкий груз? Во-первых, корпус танкера разделяют поперечными и продольными непроницаемыми переборками на отдельные отсеки - танки, а в верхней их части ставят так называемые отбойные переборки, дополнительно «разбивающие» свободную поверхность (разбивка же ее на 2 части дает уменьшение вредного влияния на остойчивость в 4 раза). Во-вторых, танки заливают полностью.

    По тем же соображениям на катере лучше иметь два топливных бака поуже, чем один широкий. Все запасные цистерны перед штормовым переходом надо заполнять целиком (как говорят моряки - запрессовывать). Расходовать жидкости надо по очереди - сначала до конца из одной цистерны, потом из следующей, чтобы свободным уровень был только в одной из них.

    Страшный враг малых судов - вода в трюме, даже если общий вес ее невелик. Однажды вышел на испытания новый рабочий катер. На первом же повороте было отмечено, что на циркуляции катер получает непривычно большой крен и очень «неохотно» выходит из него. Открыли кормовой люк - и увидели, что в ахтерпике гуляет вода, попавшая туда через едва заметную трещину в шве.

    Очень важно своевременно осушать корпуса малых судов, принимать меры к тому, чтобы в свежую погоду вода не попадала внутрь через различные отверстия и неплотности.

    С опасности от неорганизованных пассажиров мы начали этот разговор об остойчивости. Теперь, когда мы вооружены некоторыми основами теории, подчеркнем еще раз необходимость строго соблюдать установленные правила поведения на борту любых малых судов. Ведь по оплошности вставший на борт легкой мотолодки пассажир - огромная кренящая сила, составляющая почти 1/5 часть водоизмещения судна! А два пассажира, вздумавших одновременно пройти по борту «Прогресса-4» с рубкой - это реальная угроза опрокинуть судно (два таких случая с трагическим исходом произошли в Калинине прошлым летом).

    Приглашая гостей на свой «крейсер», вежливо, но решительно проинструктируйте их, познакомьте с существующими правилами безопасности. На самых малых судах бывает нельзя вставать во весь рост и пересаживаться с места на место, а люди могут этого не знать!

    До сих пор говорилось о том, что положение ЦТ изменяться не должно. Есть, однако, многочисленный класс спортивных судов, для которых всемерное перемещение ЦТ в сторону, противоположную крену, является важнейшим условием достижения высоких результатов. Речь идет об откренивании легких гоночных швертботов и катамаранов, а иногда и крейсерско-гоночных яхт. Вывешиваясь с помощью трапеции за борт, спортсмен своим весом отодвигает ЦТ и увеличивает плечо остойчивости, что и позволяет уменьшить крен, а то и избежать опрокидывания...

    Наконец, следует иметь в виду, что даже судно, остойчивое в одних условиях, может оказаться недостаточно остойчивым в других. Остойчивость может различаться, в частности, на стоянке и во время движения. Поэтому приходится учитывать еще и ходовую остойчивость . Например, водоизмещающий катер, на стоянке даже не реагирующий на сидящего у борта пассажира, при плавании на волнах вдруг начинает крениться в его сторону. Оказывается, катер как бы «зависает», опираясь кормой и носом на гребни двух соседних волн, а из-за того, что вся его средняя часть, наиболее широкая, оказывается в волновой впадине, уменьшилась уже известная нам полнота ватерлинии и сразу же снизилась остойчивость.

    На глиссирующих мотолодках возникающие при движении значительные гидродинамические силы поддержания остойчивость, как правило, увеличивают. Однако они же могут стать причиной опрокидывания: например, при слишком резком повороте изменение направления упора винта и резкое повышение (за счет дрейфа) давления у внешней к повороту скулы создают опасную пару сил, которая нередко и переворачивает лодку через внешний к повороту борт.

    Наконец, кораблестроители отдельно анализируют случаи динамического приложения кренящих сил (есть и специальное понятие - динамическая остойчивость ): при внезапном и кратковременном приложении больших внешних нагрузок поведение судна может быть совершенно не похожим на классические схемы статической остойчивости. Вот почему в штормовых условиях, при неблагоприятном динамическом воздействии шквала и удара волны переворачиваются, казалось бы, абсолютно остойчивые яхты, специально рассчитанные на плавание в самых суровых океанских условиях. (Переворачивались же яхты Чичестера, Барановского, Льюиса и других смельчаков-одиночек! Тут тонкость в том, что кораблестроители предусмотрели и это: яхты немедленно вставали на ровный киль и снова становились остойчивыми.)

    Разумеется, инженеров не удовлетворяют оценки вроде того, что «это судно - остойчивое, а то - не очень»; судостроители характеризуют остойчивость точными величинами, о которых будет рассказано в следующей статье.

    При проектировании любого судна, будь то супертанкер или гребная лодка, конструкторы делают специальные расчеты остойчивости, а когда судно проходит испытания, первым делом проверяется соответствие фактической остойчивости проекту. Чтобы иметь гарантию, что остойчивость любого нового судна при нормальной грамотной эксплуатации его в тех условиях, на которые оно рассчитано, достаточна, наблюдающие организации типа Регистра СССР специально выпускают Нормы остойчивости , а затем следят за их соблюдением. Конструкторы, создающие проект судна, выполняют все расчеты, руководствуясь этими нормами остойчивости, проверяют - не опрокинется ли будущее судно под воздействием волны и ветра. Естественно, к отдельным типам судов предъявляются дополнительные требования. Так, пассажирские суда теперь проверяют на случаи скопления всех пассажиров у одного борта да еще при крене на циркуляции (при этом угол крена не должен превышать угла, при котором входит в воду палуба, и величины 12°). Буксирные суда проверяют на действие рывка буксирного троса, а речные буксиры - и на статическое воздействие буксирного троса.

    Результаты расчетов вместе с инструкцией капитану судна оформляются в одном из наиболее важных судовых документов, называемом «Информация об остойчивости судна».

    Для маломерных судов Речной Регистр признает также натурные испытания головного судна, выполненные по специальной программе. Эти испытания могут в сомнительных случаях заменить соответствующие расчеты.

    Маломерный прогулочный флот, подконтрольный навигационно-техническим инспекциям, пока еще не имеет достаточно наглядных и простых норм остойчивости. Мореходные качества таких судов нормируются в основном установлением минимальной высоты надводного борта и отношения длины к ширине (от 2,3 до 1). В зависимости от высоты надводного борта HTИ (теперь ГИМС) делит маломерные суда на три класса: первый - с надводным бортом не менее 250 мм; второй - не менее 350 мм; третий - не менее 500 мм.

    В инструкциях, прилагаемых к маломерным судам, выпускаемым промышленностью, обычно имеются основные рекомендации по соблюдению остойчивости. С правилами безопасности каждого судоводителя-любителя знакомят прежде, чем выдать ему удостоверение на право управления судном.

    Е. А. Морозов, «КиЯ», 1978 г.

    ЛЕКЦИЯ №4

    Общие положения остойчивости. Остойчивость при малых наклонениях. Метацентр, метацентрический радиус, метацентрическая высота. Метацентрические формулы остойчивости. Определение параметров посадки и остойчивости при перемещении грузов на судне. Влияние на остойчивость незакрепленных и жидких грузов.

    Опыт кренования.

    Остойчивостью называется способность судна, выведенного из положения нормального равновесия какими-либо внешними силами, возвращаться в свое первоначальное положение после прекращения действия этих сил. К внешним силам, способным вывести судно из положения нормального равновесия, относятся: ветер, волны, перемещение грузов и людей, а также центробежные силы и моменты, возникающие при поворотах судна. Судоводитель обязан знать особенности своего судна и правильно оценивать факторы, влияющие на его остойчивость.

    Различают поперечную и продольную остойчивость. Поперечная остойчивость судна характеризуется взаимным расположением центра тяжести G и центра величины С. Рассмотрим поперечную остойчивость.

    Если судно накренить на один борт на малый угол (5-10°) (рис.1), ЦВ переместится из точки С в точку . Соответственно сила поддержания, действующая перпендикулярно к поверхности, пересечет диаметральную плоскость (ДП) в точке М .

    Точка пересечения ДП судна с продолжением направления силы поддержания при крене называется начальным метацентром М . Расстояние от точки приложения силы поддержания С до начального метацентра называется метацентрическим радиусом .

    Рис.1 – С татические силы, действующие на судно при малых накренениях

    Расстояние от начального метацентра М до центра тяжести G называется начальной метацентрической высотой .

    Начальная метацентрическая высота характеризует остойчивость при малых наклонениях судна, измеряется в метрах и является критерием начальной остойчивости судна. Как правило, начальная метацентрическая высота мотолодок и катеров считается хорошей, если она больше 0,5 м, для некоторых судов она допустима меньше, но не менее 0,35 м.

    Резким наклонением вызывается поперечная качка судна и секундомером замеряется период свободной качки, т. е время полного размаха от одного крайнего положения до другого и обратно. Поперечную метацентрическую высоту судна определяют по формуле:

    , м

    где В - ширина судна, м; Т - период качки, сек.

    Для оценки полученных результатов служит кривая на рис. 2, построенная по данным удачно спроектированных катеров.

    Ри.2 – З ависимость начальной метацентрической высоты от длины судна

    Если начальная метацентрическая высота , определенная по вышеприведенной формуле, окажется ниже заштрихованной полосы, то означает, что судно будет иметь плавную качку, но недостаточную начальную остойчивость, и плавание на нем может быть опасным. Если метацентр расположен выше заштрихованной полосы, судно будет отличаться стремительной (резкой) качкой, но повышенной остойчивостью, и следовательно, такое судно более мореходно, но обитаемость на нем неудовлетворительна. Оптимальными будут значения, попадающие в зону заштрихованной полосы.

    Крен судна на один из бортов измеряется углом между новым наклоненным положением диаметральной плоскости с вертикальной линией.

    Накрененный борт будет вытеснять воды больше, чем противоположный, и ЦВ сместится в сторону крена. Тогда равнодействующие силы поддержания и веса будут неуравновешенными, образующими пару сил с плечом, равным

    .

    Повторное действие сил веса и поддержания измеряется восстанавливающим моментом:

    .

    где D - сила плавучести, равная силе веса судна; l - плечо остойчивости.

    Эта формула называется метацентрической формулой остойчивости и справедлива только для малых углов крена, при которых метацентр можно считать постоянным. При больших углах крена метацентр не является постоянным, вследствие чего нарушается линейная зависимость между восстанавливающим моментом и углами крена.

    Малый () и большой () метацентрические радиусы можно вычислить по формулам профессора А.П.Фан-дер-Флита:

    ;
    .

    Взаимным расположением груза на судне судоводитель всегда может найти наиболее выгодное значение метацентрической высоты, при которой судно будет достаточно остойчивым и меньше подвергаться качке.

    Кренящим моментом называется произведение веса груза, перемещаемого поперек судна, на плечо, равное расстоянию перемещения. Если человек весом 75 кг, сидящий на банке, переместится поперек судна на 0,5 м, то кренящий момент будет равен 75*0,5 = 37,5 кг/м.

    Для изменения момента, накреняющего судно па 10°, надо загрузить судно до полного водоизмещения совершенно симметрично относительно диаметральной плоскости. Загрузку судна следует проверить по осадкам, измеряемым с обоих бортов. Креномер устанавливается строго перпендикулярно ДП таким образом, чтобы он показал 0°.

    После этого надо перемещать грузы (например, людей) на заранее размеченные расстояния до тех пор, пока креномер не покажет 10°. Опыт для проверки следует произвести так: накренить судно на один, а затем на другой борт. Зная крепящие моменты накреняющего судно на различные (до наибольшего возможного) углы, можно построить диаграмму статической остойчивости (рис. 3), что позволит оценить остойчивость судна.

    Рис.3 – Диаграмма статической остойчивости

    Остойчивость можно увеличивать за счет увеличения ширины судна, понижения ЦТ, устройства кормовых булей.

    Если ЦТ судна расположен ниже ЦВ, то судно считается весьма остойчивым, так как сила поддержания при крене не изменяется по величине и направлению, но точка ее приложения смещается в сторону наклона судна (рис. 4, а). Поэтому при крене образуется пара сил с положительным восстанавливающим моментом, стремящимся вернуть судно в нормальное вертикальное положение па прямой киль. Легко убедиться, что h >0, при этом метацентрическая высота равна 0. Это типично для яхт с тяжелым килем и нетипично для более крупных судов с обычным устройством корпуса.

    Если ЦТ расположен выше ЦВ, то возможны три случая остойчивости, которые судоводитель должен хорошо знать.

    1-й случай остойчивости

    Метацентрическая высота h >0. Если центр тяжести расположен выше центра величины, то при наклонном положении судна линия действия силы поддержания пересекает диаметральную плоскость выше центра тяжести (рис. 4, б).

    Рис.4 – Случай остойчивого судна

    В этом случае также образуется пара сил с положительным восстанавливающим моментом. Это типично для большинства судов обычной формы. Остойчивость в этом случае зависит от корпуса и положения центра тяжести по высоте. При крене кренящийся борт входит в воду и создает дополнительную плавучесть, стремящуюся выровнять судно. Однако при крене судна с жидкими и сыпучими грузами, способными перемещаться в сторону крена, центр тяжести также сместится в сторону крена. Если центр тяжести при крене переместится за отвесную линию, соединяющую центр величины с метацентром, то судно опрокинется.

    2-ой случай неостойчивого судка при безразличном равновесии

    Метацентрическая высота h = 0. Если ЦТ лежит выше ЦВ, то при крене линия действия силы поддержания проходит через ЦТ MG=0 (рис. 5).

    Рис.5 – Случай неостойчивого судна при безразличном равновесии

    В данном случае ЦВ всегда располагается на одной вертикали с ЦТ, поэтому восстанавливающаяся пара сил отсутствует. Без воздействия внешних сил судно не может вернуться в прямое положение. В данном случае особо опасно и совершенно недопустимо перевозить на судне жидкие и сыпучие грузы: при самой незначительной качке судно перевернется. Это свойственно шлюпкам с круглым шпангоутом.

    3-й случай неостойчивого судна при неустойчивом равновесии

    Метацентрическая высота h <0. ЦТ расположен выше ЦВ, а в наклонном положении судна линия действия силы поддержания пересекает след диаметральной плоскости ниже ЦТ (рис. 6). Сила тяжести и сила поддержания при малейшем крене образуют пару сил с отрицательным восстанавливающим моментом и судно опрокидывается.

    Рис.6 – С лучай неостойчивого судна при неустойчивом равновесии

    Разобранные случаи показывают, что судно остойчиво, если метацентр расположен выше ЦТ судна. Чем ниже опускается ЦТ, тем судно более остойчиво. Практически это достигается расположением грузов не на палубе, а в нижних помещениях и трюмах.

    Вследствие воздействия на судно внешних сил, а также в результате недостаточно прочного закрепления груза, возможно его перемещение на судне. Рассмотрим влияние данного фактора на изменение параметров посадки судна и его остойчивость.

    Вертикальное перемещение груза.

    Рис.1 – Влияние вертикального перемещения груза на изменение метацентрической высоты

    Определим изменение посадки и остойчивости судна, вызванное перемещением малого груза в вертикальном направлении (рис.1) из точки в точку. Поскольку масса груза не меняется, то и водоизмещение судна остается неизменным. Следовательно, соблюдается первое условие равновесия:
    . Из теоретической механики известно, что при перемещении одного из тел ЦТ всей системы перемещается в том же направлении. Следовательно, ЦТ судна переместится в точку , а сама вертикаль пройдет, как и прежде, через центр величины .

    Будет соблюдено второе условие равновесия:
    .

    Так как в нашем случае оба условия равновесия соблюдены, то можно сделать вывод: при вертикальном перемещении груза судно не изменяет своего положения равновесия.

    Рассмотрим изменение начальной поперечной остойчивости. Так как формы погруженного в воду объема корпуса судна и площади ватерлинии не изменились, то положение центра величины и поперечного метацентра при перемещении груза по вертикали остается неизменным. Перемещается только ЦТ судна, что повлечет уменьшение метацентрической высоты
    , а также
    , откуда
    , где - вес перемещаемого груза, кН ; - расстояние, на которое переместился ЦТ груза в вертикальном направлении, м .

    Таким образом, новое значение
    , где знак (+) применяется при перемещении груза вверх, а знак (-) вниз.

    Из формулы видно, что вертикальное перемещение груза вверх вызывает уменьшение поперечной остойчивости судна, а при перемещении вниз поперечная остойчивость увеличивается.

    Изменение остойчивости равно произведению
    . Изменение поперечной остойчивости будет относительно меньше у судна с большим водоизмещением, чем у судна с малым, поэтому на судах с большим водоизмещением перемещение грузов безопаснее, чем на малых судах.

    Поперечное горизонтальное перемещение груза.

    Перемещение груза из точки в точку (рис.2) на расстояние вызовет крен судна на угол и смещение его ЦТ в направлении, параллельном линии перемещения груза.

    Рис.2 – Возникновение кренящего момента при поперечном перемещении груза

    Накренившись на угол , судно приходит в новое положение равновесия, сила тяжести судна , приложенная теперь в точке и сила поддержания
    , приложенная в точке , действуют по одной вертикали, перпендикулярной новой ватерлинии
    .

    Перемещение груза приводит к образованию кренящего момента:

    ,

    где - плечо перемещения груза, м .

    Восстанавливающий момент по метацентрической формуле остойчивости

    .

    Так как судно находится в равновесии, то
    и , откуда угол крена при поперечном перемещении груза
    . Так как угол крена мал, то
    .

    Если судно уже имеет начальный угол крена, то после горизонтального перемещения груза угол крена будет
    .