Британская аэрокосмическая фирма представила концепт самолёта без иллюминаторов. Вместо них они предлагают установить дисплеи, на которых бы отображались события, происходящие за бортом, демонстрировались фильмы. Самолёты без окон способны кардинально изменить облик гражданской авиации, при этом значительно снизится расход топлива.

Дизайн частного самолёта разрабатывали специалисты французской компании, проект они представили ещё в августе. Вместо иллюминаторов они предложили использовать дисплеи, демонстрирующие фильмы для отдыха и презентации для работы. Технический отдел говорит, что отсутствие окон поможет снизить вес судна, следовательно, уменьшится расход топлива, стоимость обслуживания, а освободившееся пространство расширяет возможности для усовершенствования интерьера. Гарет Дэвис, главный дизайнер «Technicon Design», компании предложившей проект, сказал, что некоторые элементы, например, гибкие дисплеи, уже можно воплотить в реальность.

Американская фирма Spike Aerospace планирует представить подобный самолёт уже в 2018 году. Это будет роскошный Spike S-512 Supersonic Jet, способный долететь от Нью-Йорка до Лондона за 4 часа с 12-18 пассажирами. Бостонская компания тоже видит самолёт будущего без окон. В результате пассажирам не придётся прятаться от солнца, то поднимая, то опуская жалюзи. Исчезнет и монотонность в полёте. Дизайнеры считают, что по большому счёту пассажиры мало что видят во время полёта – пару звёзд, луну, бескрайний океан, облака. Вес самолёта тоже уменьшится, позволив экономить топливо. Стены самолёта превратятся в огромные тонкие дисплеи, демонстрирующие окружающие судно панорамы. В качестве альтернативы можно будет посмотреть фильм, слайды, документы.

Правда, разработчики признают и возможные проблемы. Во-первых, у многих может повыситься чувство тревожности в замкнутом пространстве, когда не видно, что происходит снаружи. Во-вторых, видеть нужно не только пассажирам, но и спасателям в случае необходимости нужно видеть, что происходит внутри, в противном случае они будут действовать вслепую. И, в-третьих, возможны проблемы с людьми, страдающими от укачивания. Обычно такие пассажиры просто периодически смотрят в окно, находят для себя ориентир. Здесь же они будут лишены такой возможности, экраны не смогут им помочь.

Центр технологических новшеств (Centre for Process Innovation) тоже предлагает свой самолёт с огромными OLED дисплеями, на которые будет передаваться изображение с камер, установленных снаружи. Будет возможность подключиться к интернету. Уменьшение веса самолёта – самая важная проблема, которую стараются решить инженеры. Вот они и решили обратиться к идее строительства по аналогии с грузовыми самолётами. А пока проект находится в процессе доработки.

ГОРИЗОНТЫ НАУКИ

Аэрокосмический

транспорт к V Л VI11Р ГП

Мощным толчком ракета вертикально поднимается со стартовой площадки и уходит ввысь... Эта привычная с 1960-х гг. картина в скором времени может кануть в Лету. На смену одноразовым космическим системам и «челнокам» должно прийти новое поколение аппаратов - воздушно-космические самолеты, которые будут обладать способностью взлетать и приземляться горизонтально, подобно обычным авиалайнерам

Ч - . , " Л* „ - , (/

3. КРАУЗЕ. А. М. ХАРИТОНОВ

КРАУЗЕ Эгон - заслуженный профессор, СП 973 по 1998 гг. - директор Аэродинамического института Рейн-Вестфапьской технической высшей школы (ГОАШ^" (Ах^н, Германия). Лауреат премии Общества Макса Дланка, по.ч®ный доктор Сибирского отделения РАН ~

XAPMTOHCJP Анатолий. Михайлович - доктор технических наук, профёссдИглабный научный сотрудник Института теоретической и прикладной механики им. С. А. Христиановича СО РАН (Новосибирск). Заслуженный деятель науки РФ, лауреат премии Совета Министров СССР (1985). Автор и соавтор около 150 научных работ и 2 патентов

альнейшее развитие космонавтики определяется необходимостью интенсивной эксплуатации космических станций, развития систем глобальной связи и навигации, мониторинга окружающей среды в планетарном масштабе. Для этих целей в ведущих странах мира ведутся разработки воз-дуишо-космических самолетов (ВКС) многократного использования, которые позволят существенно снизить стоимость доставки грузов и людей на орбиту. Это ¡будут системы, характеризующиеся возможностями, [наиболее актуальные из которых следующие:

Многоразовое использование для вывода на орбиту производственных и научно-технических грузов с относительно небольшим промежутком времени между повторными вылетами;

Возвращение аварийных и отработавших конструкций, засоряющих космос;

Спасение экипажей орбитальных станций и космических кораблей в аварийных ситуациях;

Срочная разведка районов стихийных бедствий и катастроф в любой точке земного шара.

В странах с развитыми авиационно-космическими

технологиями достигнуты большие успехи в области высоких скоростей полета, которые определяют потенциальную возможность создания широкого спектра гиперзвуковых воздушно-реактивных самолетов. Есть все основания полагать, что в будущем пилотируемая авиация освоит скорости от чисел Маха М = 4-6 до М = 12-15 (пока держится рекорд М = 6,7, установленный еще в 1967 г. американским экспериментальным самолетом Х-15 с ракетным двигателем).

Если говорить о гражданской авиации, то освоение больших скоростей чрезвычайно важно для интенсификации пассажирских перевозок и деловых связей. Гиперзвуковые пассажирские самолеты с числом Маха 6 смогут обеспечить малоутомительную продолжительность перелета (не более 4 часов) на международных маршрутах с дальностью около 10 тыс. км, таких как Европа (Париж) - Южная Америка (Сан-Паулу), Европа (Лондон) - Индия, США (Нью-Йорк) - Япония. Вспомним, что время полета сверхзвукового «Конкорда» от Нью-Йорка до Парижа составляло около 3 часов, а «Боинг-747» затрачивает на этом маршруте около 6,5 часа. Самолеты будущего с числом Маха 10

СЛОВАРЬ АЭРОДИНАМИЧЕСКИХ ТЕРМИНОВ

Число Маха - параметр, характеризующий, во сколько раз скорость летательного аппарата (или газового потока) больше скорости звука Гиперзвуковая скорость - нестрогий термин для обозначения скорости с числом Маха, превышающим 4 5 Число Рейнольдса - параметр, характеризующий соотношение между силами инерции и силами вязкости в потоке

Угол атаки - наклон плоскости крыла к линии полета Скачок уплотнения (ударная волна) - узкая область течения, в которой происходит резкое падение скорости сверхзвукового газового потока, приводящее к скачкообразному увеличению плотности Волна разрежения - область течения, в которой происходит резкое уменьшение плотности газовой среды

Схема модели двухступенчатой аэрокосмической системы Е1_АС-ЕОЭ. Эти аппараты будут взлетать и садиться горизонтально, подобно обычным самолетам. Предполагается, что длина полномасштабной конфигурации составит 75 м, а размах крыла - 38 м. По: (Рейбл, Якобе, 2005)

за 4 часа смогут преодолеть 16-17 тыс. км, совершив беспосадочный перелет, например, из США или Европы в Австралию.

ГТайа маоТай

Для гиперзвуковых самолетов необходимы новые технологии, совершенно отличные от тех, которые присущи современным самолетам и вертикально взлетающим космическим аппаратам. Конечно, ракетный

двигатель производит большую тягу но он расходует горючее в огромных количествах, и к тому же ракета должна нести окислитель на борту. Поэтому использование ракет в атмосфере ограничивается кратковременными полетами.

Стремление решить эти сложные технические задачи привело к разработке различных концепций космических транспортных систем. Принципиальным направлением, которое активно исследуется ведущими аэрокосмическими фирмами мира, является одноступенчатый В КС. Такой воздушно-космический самолет, взлетая с обычного аэродрома, может обеспечить доставку на околоземную орбиту полезной нагрузки, составляющей около 3% от взлетного веса. Другая концепция многоразовых систем - двухступенчатые аппараты. В этом случае первая ступень оснащается воздушно-реактивным двигателем, а вторая - является орбитальной, и разделение ступеней осуществляется в диапазоне чисел Маха от 6 до 12 на высотах около 30 км.

В 1980-1990 гг. проекты ВКС разрабатывались в США (NASP), Англии (HOTOL), ФРГ (Sänger), Франции (STS-2000, STAR-H), России (ВКС НИИ-1, «Спираль», Ту-2000). В 1989 г. по инициативе Немецкого исследовательского общества (DFG) начались совместные исследования трех германских центров:

Рейн-Вестфальской технической высшей школы в Ахене, Технического университета Мюнхена и Университета Штутгарта. Эти центры, спонсируемые DFG, провели долгосрочную программу исследований, включающую изучение фундаментальных вопросов, необходимых для проектирования космических транспортных систем, таких как общая разработка, аэродинамика, термодинамика, механика полета, двигатель, материалы и пр. Значительная часть работ по экспериментальной аэродинамике была выполнена в сотрудничестве с Институтом теоретической и прикладной механики им. С. А. Христиановича СО РАН. Организация и координация всех исследовательских работ осуществлялись комитетом, который в течение десяти лет возглавлял один из авторов настоящей статьи (Э. Краузе). Мы предлагаем вниманию читателя ряд наиболее наглядных визуальных материалов, иллюстрирующих некоторые результаты, полученные в рамках этого проекта в области аэродинамики.

Полет двухступенчатой системы ELAC-EOS должен охватывать широчайший диапазон скоростей: от преодоления звукового барьера (М = 1) до отделения орбитальной ступени (М = 7) и выхода ее на околоземную орбиту (М = 25). По: (Рейбл, Якобе, 2005)

Звуковой барьер Число Маха

ГОРИЗОНТЫ НАУКИ

Большая модель ELAC 1 (длиной более 6 м) в рабочей части германско-голландской аэродинамической трубы DNW малых скоростей. По: (Рейбл, Якобе, 2005)

Aaóóñóó"i áí^áóáy ñeñóálá ELAC-EOS

Для исследований была предложена концепция двухступенчатого аэрокосмического аппарата (несущая ступень называлась по-немецки ELAC, орбитальная - EOS). Топливо - жидкий водород. Предполагалось, что полномасштабная конфигурация ELAC будет иметь длину 75 м, размах крыла - 38 м и большой г/гол стреловидности. При этом длина ступени EOS составляет 34 м, а размах крыла - 18 м. Орбитальная ступень имеет эллиптическую носовую часть, центральный корпус с полуцилиндрической верхней стороной и один киль в плоскости симметрии. На верхней поверхности первой ступени имеется углубление, в котором размещена орбитальная ступень при наборе высоты. Хотя оно неглубокое, при гиперзвуковых скоростях во время разделения (М = 7) оказывает существенное влияние на характеристики потока.

Для проведения теоретических и экспериментальных исследований были спроектированы и изготовлены несколько моделей несущей и орбитальной ступеней в масштабе 1:150. Для испытаний при малых скоростях в германско-голландской аэродинамической трубе DNW была сделана большая модель исследуемой конфигурации в масштабе 1:12 (длина более 6 м, масса около 1600 кг).

Aegóáeegáóey ñaáSógaóeá

Полет со сверхзвуковой скоростью представляет для исследователя большую сложность, поскольку сопровождается формированием ударных волн, или скачков уплотнения, а летательный аппарат в таком полете проходит несколько режимов обтекания (с различными локальными структурами), сопровождающихся ростом тепловых потоков.

Эта задача в проекте ELAC-EOS исследовалась и экспериментально, и численно. Большинство экспериментов было проведено в аэродинами-

Маслосажевая картина линий тока на поверхности модели ELAC 1, полученная в аэродинамической трубе Т-313 Института теоретической и прикладной механики СО РАН. По: (Krause et al., 1999)

Сравнение результатов численного моделирования вихревых структур на подветренной стороне модели Е1.АС 1 (справа) и экспериментальной визуализации методом лазерного ножа (слева). Результаты численного расчета получены решением уравнений Навье-Стокса для ламинарного течения при числе Маха М = 2, числе Рейнольдса Йе = 4 10е и угле атаки а = 24°. Расчетные вихревые картины похожи на наблюдаемые экспериментально; имеются различия в поперечных формах отдельных вихрей. Заметим, что набегающий поток перпендикулярен плоскости картинки. По: (ЭКотЬегд е? а/., 1996)

ческой трубе Т-313 ИТПМ СО РАН в Новосибирске. Число Маха набегающего потока в этих экспериментах изменялось в диапазоне 2 < М < 4, число Рейнольдса - 25 106 < Ие < 56 106, а г/гол атаки - в диапазоне - 3° < а < 10°. При этих параметрах измерялось распределение давлений, аэродинамические силы и моменты, а также выполнялась визуализация линий тока на поверхности модели.

Полученные результаты в числе прочего ясно демонстрируют образование вихрей на подветренной стороне. Панорамные картины течений на поверхности модели визуализировались посредством покрытия специальными жидкостями или маслосажевой смесью. В типичном примере маслосажевой визуализации видно, как поверхностные линии тока сворачивают внутрь от передней кромки крыла и стекаются в линию, ориентированную приблизительно в направлении течения. Наблюдаются также другие полосы, направленные в сторону центральной линии модели.

Эти четкие следы на подветренной стороне характеризуют поперечное течение, трехмерную структуру которого можно наблюдать с помощью метода лазерного ножа. С увеличением угла атаки поток воздуха перетекает с наветренной поверхности крыла на подветренную, формируя сложную вихревую систему. Отметим, что первичные вихри с пониженным давлением в ядре вносят положительный вклад в подъемную силу аппарата. Сам метод лазерного ножа основан на фотографировании когерентного излучения, рассеянного

Вихревой пузырь в переходном состоянии

Полностью развившаяся вихревая спираль

Процессы распада вихрей на подветренной стороне конфигурации ELAC 1 визуализировались посредством впрыска флуоресцентной краски. По: (Stromberg, Limberg, 1993)

¡Я ГОРИЗОНТЫ НАУКИ

на вводимых в поток твердых или жидких микрочастицах, распределение концентрации которых обусловливается структурой исследуемых течений. Когерентный источник света формируется в виде тонкой световой плоскости, что, собственно, и дало название методу. Интересно, что с точки зрения обеспечения необходимой контрастности изображения очень эффективными оказываются микрочастицы обычной воды (туман).

При определенных условиях ядра вихрей могут разрушаться, что уменьшает подъемную силу крыла. Этот процесс, называемый срывом вихря, развивается

по типу «пузырь» или «спираль», визуальные различия между которыми демонстрирует фотография, сделанная с помощью впрыска флуоресцентной краски. Обычно пузырьковый режим срыва вихря предшествует распаду по спиральному типу.

Полезную информацию о спектрах сверхзвукового обтекания летательных аппаратов дает теневой метод Теплера. С его помощью визуализируются неоднородности в газовых потоках, при этом особенно хорошо видны скачки уплотнения и волны разрежения.

Линзы основного объектива Проекционный объектив Экран (фотокамера)

Источник света V г Ч Неоднородность Нож Фуко " I

ТЕНЕВОЙ МЕТОД ТЕПЛЕРА

Еще в 1867 г. немецкий ученый А. Теплер предложил метод обнаружения оптических неоднородностей в прозрачных средах, который до сих пор не потерял актуальности в науке и технике. В частности, он широко применяется для исследования распределения плотности воздушных потоков при обтекании моделей летательных аппаратов в аэродинамических трубах.

Оптическая схема одной из реализаций метода представлена на рисунке. Пучок лучей от щелевого источника света системой линз направляется через исследуемый объект и фокусируется на кромке непрозрачной ширмы (так называемый нож Фуко). Если в исследуемом объекте нет оптических неоднородностей, то все лучи задерживаются ножом. При наличии неоднородностей лучи будут рассеиваться, и часть их, отклонившись, пройдет выше кромки ножа. Поставив за плоскостью ножа Фуко проекционный объектив, можно спроектировать эти лучи на экран (направить в фотокамеру) и получить изображение неоднородностей.

Рассмотренная простейшая схема позволяет визуализировать градиенты плотности среды, перпендикулярные кромке ножа, градиенты же плотности по другой координате приводят к смещению изображения вдоль кромки и не меняют освещенности экрана. Существуют различные модификации метода Теплера. Например, вместо ножа устанавливается оптический фильтр, состоящий из параллельных полосок разных цветов. Или используется круглая диафрагма с цветными секторами. В этом случае при отсутствии неоднородностей лучи из разных точек проходят через одно и то же место диафрагмы, поэтому все поле окрашено в один цвет. Появление неоднородностей обусловливает отклонение лучей, которые проходят через разные секторы, и изображения точек с различным отклонением света окрашиваются в соответствующие цвета.

Головной скачок уплотнения

Веер волн разрежения

Скачок уплотнения

Эта теневая картина обтекания модели ЕЬАС 1 получена оптическим методом Теплера в сверхзвуковой аэродинамической трубе в Ахене. По: (Нэпе! е? а/., 1993)

Теневая фотография обтекания модели Е1.АС 1 с воздухозаборником в гиперзвуковой ударной трубе (М = 7,3) в Ахене. Красивые радужные сполохи в правой нижней части снимка представляют собой хаотические течения внутри воздухозаборника. По: (Оливье и др., 1996)

Теоретическое распределение чисел Маха (скоростей) при обтекании двухступенчатой конфигурации Е1_АС-ЕОЭ (число Маха набегающего потока М = 4,04). По: (Брейтсамтер и др., 2005)

Наблюдалось хорошее согласие между расчетными и экспериментальными данными, что подтверждает надежность численного решения при прогнозировании гиперзвуковых течений. Пример расчетной картины распределения чисел Маха (скоростей) в потоке во время процесса разделения представлен на этой странице. На обетЖ^гФенях видны скачки уплотнения и локальные разрежения. У задней части конфигурации ЕЬАС 1С в реальности разрежения не будет, поскольку там разместится гиперзвуковой прямоточный воздуш-но-реактивный двигатель.

Разделение несущей и орбитальной ступеней - одна из самых трудных задач, рассмотренных в ходе работы над проектом ELAC-EOS. В целях безопасности маневрирования этот этап полета требует особенно.тщательного изучения. Численные исследования его * различных фаз были проведены в центре SFB 255 при Техническом университете Мюнхена, а вся экспериментальная работа выполнена в Институте теоретической и прикладной механики СО РАН. Испытания в сверхзвуковой аэродинамической трубе Т-313 включали в себя визуализацию обтекания полной конфигурации и измерения аэродинамических характеристик и поверхностных давлений в процессе разделения ступеней.

Модель нижней ступени ELAC 1С отличалась от первоначального варианта ELAC 1 отсеком небольшой глубины, в котором должна располагаться орбитальная ступень во время взлета и набора высоты. Компьютерное моделирование проводилось при числе Маха набегающего потока М = 4,04, числе Рейнольдса -Re = 9,6 106 и нулевом угле атаки модели EOS.

целом можно сказать, что исследования аэродинамической концепции двухступенчатой систем ÜiELAC-EOS , инициированные Немецким исследовательским обществом DFG, оказались успешными. В результате обширного комплекса теоретических и экспериментальных работ, в которых участвовали научные центры Европы, Азии, Америки и Австралии, был выполнен полный расчет конфигурации, способной к горизонтальному взлету и посадке в стандартном аэропорту, решены аэродинамические

задачи полета с низкими, сверхзвуковыми и особенно гиперзвуковыми скоростями.

В настоящее время ясно, что создание перспективного аэрокосмического транспорта требует еще детальных исследований по разработке гиперзвуковых воздуш-но-реактивных двигателей, надежно работающих в широком диапазоне скоростей полета, высокоточных систем управления процессами разделения ступеней и посадки орбитального модуля, новых высокотемпературных материалов и т.д. Решение всех этих сложных научно-технических задач невозможно без объединения усилий ученых разных стран. И опыт данного проекта только подтверждает: долговременное международное сотрудничество становится неотъемлемым элементом аэрокосмических исследований.

Литература

Kharitonov А.М., Krause Е., Limberg W. et al.//J. Experiments in Fluids. - 1999. - V. 26. - P. 423.

Brodetsky M.D., Kharitonov A.M., Krause E. et al. //J. Experiments in Fluids. - 2000. - V. 29. - P. 592.

Brodetsky M.D., Kharitonov A.M., Krause E. et al. // Proc. at X Int. Conference on the Methods of Aemphysical Research. Novosibirsk. - 2000. -V.1.- P. 53.

Krause E., Brodetsky M.D., Kharitonov A.M. // Proc. at WFAM Congress. Chicago, 2000.

Бродецкий М.Д., Краузе Э., Никифоров С.Б. и др. // ПМТФ. - 2001. - Т. 42. - С. 68.

– самую тяжелую грузоподъемную ракету на настоящий момент – и, возможно, транспортная революция ближе, чем мы думаем. Рассказываем, каким удивительным может быть транспорт будущего.

Автомобиль

Города будущего будут становиться все более . Машины на дорогах будут встречаться все реже – особенно в крупных городах. Мадрид, Копенгаген и Гамбург берут на вооружение политику , чтобы стать максимально и . А вот между городами автомобильные трассы станут сверхскоростными – Илон Маск уже построить такой скоростной тоннель между Лос-Анжелесом и его пригородом Калвер-Сити. По нему автомобили смогут передвигаться без пробок и со скоростью до 240 км/ч.

Сами дороги тоже изменятся и помимо транспорта будут обеспечивать населенные пункты энергией. Уже сейчас во Франции есть , выложенная солнечными батареями: на участок дороги длиной в один километр выложили 2800 квадратных метров солнечных панелей. Энергии, вырабатываемой «солнечной дорогой», хватит на все уличные фонари ближайшей деревни, а компания, выполнившая проект, считает, что Франция может стать энергетически независимой, если всего 250 тысяч километров дорог будут вымощены солнечными панелями.

Общественный транспорт

Общественный транспорт в будущем будет отказываться от ископаемых видов топлива и перейдет на возобновляемые ресурсы, которые могут оказаться непривычными. Власти Лондона уже городские автобусы на биотопливо, которое частично изготовлено из кофейной гущи. Кофейные отходы будут собирать у фабрик, баров, кофеен и ресторанов по всему городу, а затем отправлять на переработку. Новое топливо сокращает количество вредных выбросов на 10-15 %. Недостатка в нем не предвидится – население Лондона ежегодно «оставляет» после себя 200 тысяч тонн кофейных отходов.

В Осло не отстают от Лондона: с 2019 года там начнут ездить . А к 2025 году в Норвегии планируют полностью запретить авто с двигателями внутреннего сгорания. Беспилотный электроавтобус вместит 12 пассажиров и развивает скорость около 20 км/ч. Вызвать автобус можно будет при помощи специального мобильного приложения. Время ожидания – не более 10 минут.

Городские автобусы будущего станут зелеными не только в плане источников топлива, но и в прямом смысле – на крышах общественного транспорта будут сады с живыми растениями. Такой проект уже и направлен на улучшение экологической обстановки в городе и сокращение вредных выбросов в воздух. Каждый сад будет построен со специальной системой орошения и устроен таким образом, чтобы растения смогли выдержать постоянное движение.

Возможно, скоро не нужно будет покупать бесконечные талончики и проездные – достаточно будет надеть на себя определенный предмет одежды. В Берлине, например, которые являются одновременно проездным на все виды транспорта на год.

Для тех, кого в городах не устраивает ни удобный общественный транспорт, ни велосипеды, в будущем будет доступно летающее такси. Uber запустить летающие такси уже в 2020 году в Техасе и Дубае. Такое такси будет представлять собой небольшой легкомоторный самолет с электрическим двигателем. Компания планирует сделать самолеты тихими, чтобы использовать их в черте города. Еще один похожий вариант транспортировки (тоже в Дубае) – . Пассажирский дрон сможет перевозить людей весом менее 100 килограммов, максимальная его скорость составит 160 км/ч, а быть в воздухе он сможет не более 30 минут и унесет своих пассажиров на максимальное расстояние в 50 километров.

Поезд

Поезда будут все ускоряться, составляя неслабую конкуренцию самолетам. В Китае, между Пекином и Шанхаем, уже сейчас запустили . Он может разгоняться до 350 км/ч и преодолевает расстояние в 1200 км за 4 часа 28 минут. Это на полтора часа быстрее, чем другие поезда.

Но еще больше перспектив в деле поездов предложил Илон Маск еще в 2013 году с концепцией – системой поездов с электродвигателем, которые проносятся по трубопроводам с низким давлениям на воздушной или магнитной подушке. Вакуумный поезд будет в два раза быстрее самолета и в три раза быстрее скоростного поезда, достигая максимальной скорости в 1200 км/ч. Hyperloop уже показала , провела и до 310 километров в час на тестовой трассе в Неваде. Ближайший возможный маршрут соединит Абу-Даби и Дубай в 2020 году.

В Германии тоже представили свой – в нем будут спортивные тренажеры, плазменные телевизоры и переговорные отсеки со звукоизоляцией и планшетами (в качестве конкуренции – в Шотландии). Пока одни концентрируются на комфорте, другие – на технологиях: в той же Германии к 2021 году запустят . Это будет экологичный и совершенно бесшумный пассажирский поезд Coradia iLint – первый в истории поезд дальнего следования, который испускает в атмосферу лишь пар и водный конденсат. Бак с водородом располагается на крыше поезда и обеспечивает работу топливного элемента, а тот, в свою очередь, производит электроэнергию. Такой поезд может непрерывно следовать без заправки 1000 км и развивать скорость до 140 км/ч.

И, конечно, поезда будущего будут ездить на энергии из возобновляемых источников. В Нидерландах уже сейчас поезда на 100% от электроэнергии, произведенной ветром. Часа работы одной ветроустановки хватает для поездки на поезде расстоянием в 192 км. При этом до 2020 года в Нидерландах надеются уменьшить количество энергии, необходимой для перевозки одного пассажира, еще на 35%.

Самолет

Самолеты – кажется, самый привычный современным путешественникам вид транспорта, хоть и не самый экологичный из-за слишком больших выбросов СО2. Впрочем, уже есть самолет, летающий на биотопливе: в частности, самолет авиакомпании Qantas первый полет между США и Австралией с использованием биотоплива, произведенного из специального сорта горчицы. Самолет заправили 24 тоннами биотоплива из горчицы Brassica Carinata. По данным авиакомпании Qantas, это позволило уменьшить выбросы углекислого газа за один полет на 18 тонн по сравнению с использованием обычного керосина.

Аэрокосмический транспорт будущего

Мощным толчком ракета вертикально поднимается со стартовой площадки и уходит ввысь... Эта привычная картина в скором времени может кануть в Лету. На смену одноразовым космическим системам и «челнокам» должно прийти новое поколение аппаратов - воздушно-космические самолеты, которые будут обладать способностью взлетать и приземляться горизонтально, подобно обычным авиалайнерам. Участники международного исследовательского проекта знакомят читателей с некоторыми визуальными материалами, иллюстрирующими концепцию двухступенчатого аэрокосмического транспорта будущего

Дальнейшее развитие космонавтики определяется необходимостью интенсивной эксплуатации космических станций, развития систем глобальной связи и навигации, мониторинга окружающей среды в планетарном масштабе. Для этих целей в ведущих странах мира ведутся разработки воздушно-космических самолетов (ВКС) многократного использования, которые позволят существенно снизить стоимость доставки грузов и людей на орбиту. Это будут системы, характеризующиеся возможностями, наиболее актуальные из которых следующие: многоразовое использование для вывода на орбиту производственных и научно-технических грузов с относительно небольшим промежутком времени между повторными вылетам; возвращение аварийных и отработавших конструкций, засоряющих космос; спасение экипажей орбитальных станций и космических кораблей в аварийных ситуациях; срочная разведка районов стихийных бедствий и катастроф в любой точке земного шара.

В странах с развитыми авиационно-космическими технологиями достигнуты большие успехи в области высоких скоростей полета, которые определяют потенциальную возможность создания широкого спектра гиперзвуковых воздушно-реактивных самолетов. Есть все основания полагать, что в будущем пилотируемая авиация освоит скорости от чисел Маха M = 4–6 до M = 12–15 (пока держится рекорд M = 6,7, установленный еще в 1967 г. американским экспериментальным самолетом Х-15 с ракетным двигателем).

Если говорить о гражданской авиации, то освоение больших скоростей чрезвычайно важно для интенсификации пассажирских перевозок и деловых связей. Гиперзвуковые пассажирские самолеты с числом Маха 6 смогут обеспечить малоутомительную продолжительность перелета (не более 4 часов) на международных маршрутах с дальностью около 10 тыс. км, таких как Европа (Париж) – Южная Америка (Сан-Паулу), Европа (Лондон) – Индия, США (Нью-Йорк) – Япония. Вспомним, что время полета сверхзвукового «Конкорда» от Нью-Йорка до Парижа составляло около 3 часов, а «Боинг-747» затрачивает на этом маршруте около 6,5 часа. Самолеты будущего с числом Маха 10 за 4 часа смогут преодолеть 16-17 тыс. км, совершив беспосадочный перелет, например, из США или Европы в Австралию.

Новые подходы

Для гиперзвуковых самолетов необходимы новые технологии, совершенно отличные от тех, которые присущи современным самолетам и вертикально взлетающим космическим аппаратам. Конечно, ракетный двигатель производит большую тягу, но он расходует горючее в огромных количествах, и к тому же ракета должна нести окислитель на борту. Поэтому использование ракет в атмосфере ограничивается кратковременными полетами.

СЛОВАРЬ АЭРОДИНАМИЧЕСКИХ ТЕРМИНОВ

Число Маха – параметр, характеризующий, во сколько раз скорость летательного аппарата (или газового потока) больше скорости звука
Гиперзвуковая скорость – нестрогий термин для обозначения скорости с числом Маха, превышающим 4 5
Число Рейнольдса – параметр, характеризующий соотношение между силами инерции и силами вязкости в потоке
Угол атаки – наклон плоскости крыла к линии полета
Скачок уплотнения (ударная волна) – узкая область течения, в которой происходит резкое падение скорости сверхзвукового газового потока, приводящее к скачкообразному увеличению плотности
Волна разрежения – область течения, в которой происходит резкое уменьшение плотности газовой среды

Стремление решить эти сложные технические задачи привело к разработке различных концепций космиче­ских транспортных систем. Принципиальным направлением, которое активно исследуется ведущими аэрокосмическими фирмами мира, является одноступенчатый ВКС. Такой воздушно-космический самолет, взлетая с обычного аэродрома, может обеспечить доставку на околоземную орбиту полезной нагрузки, составляющей около 3% от взлетного веса. Другая концепция многоразовых систем – двухступенчатые аппараты. В этом случае первая ступень оснащается воздушно-реактивным двигателем, а вторая – является орбитальной, и разделение ступеней осуществляется в диапазоне чисел Маха от 6 до 12 на высотах около 30 км.

В 1980-1990 гг. проекты ВКС разрабатывались в США (NASP), Англии (HOTOL), ФРГ (Snger), Франции (STS-2000, STAR-H), России (ВКС НИИ-1, «Спираль», Ту-2000). В 1989 г. по инициативе Немецкого исследовательского общества (DFG) начались совместные исследования трех германских центров: Рейн-Вестфальской технической высшей школы в Ахене, Технического университета Мюнхена и Университета Штутгарта. Эти центры, спонсируемые DFG, провели долгосрочную программу исследований, включающую изучение фундаментальных вопросов, необходимых для проектирования космических транспортных систем, таких как общая разработка, аэродинамика, термодинамика, механика полета, двигатель, материалы и пр. Значительная часть работ по экспериментальной аэродинамике была выполнена в сотрудничестве с Институтом теоретической и прикладной механики им. С. А. Христиановича СО РАН. Организация и координация всех исследовательских работ осуществлялись комитетом, который в течение десяти лет возглавлял один из авторов настоящей статьи (Э. Краузе). Мы предлагаем вниманию читателя ряд наиболее наглядных визуальных материалов, иллюстрирующих некоторые результаты, полученные в рамках этого проекта в области аэродинамики.

Двухступенчатая система ELAC–EOS

Для исследований была предложена концепция двухступенчатого аэрокосмического аппарата (несущая ступень называлась по-немецки ELAC, орбитальная – ЕОS). Топливо – жидкий водород. Предполагалось, что полномасштабная конфигурация ELAC будет иметь длину 75 м, размах крыла – 38 м и большой угол стреловидности . При этом длина ступени EОS составляет 34 м, а размах крыла – 18 м. Орбитальная ступень имеет эллиптическую носовую часть, центральный корпус с полуцилиндрической верхней стороной и один киль в плоскости симметрии. На верхней поверхности первой ступени имеется углубление, в котором размещена орбитальная ступень при наборе высоты. Хотя оно неглубокое, при гиперзвуковых скоростях во время разделения (M = 7) оказывает существенное влияние на характеристики потока.

Для проведения теоретических и экспериментальных исследований были спроектированы и изготовлены несколько моделей несущей и орбитальной ступеней в масштабе 1:150. Для испытаний при малых скоростях в германско-голландской аэродинамической трубе DNW была сделана большая модель исследуемой конфигурации в масштабе 1:12 (длина более 6 м, масса около 1600 кг).

Визуализация сверхзвука

Полет со сверхзвуковой скоростью представляет для исследователя большую сложность, поскольку сопровождается формированием ударных волн, или скачков уплотнения , а летательный аппарат в таком полете проходит несколько режимов обтекания (с различными локальными структурами), сопровождающихся ростом тепловых потоков.

Эта задача в проекте ELAC–EOS исследовалась и экспериментально, и численно. Большинство экспериментов было проведено в аэродинамической трубе T-313 ИТПМ СО РАН в Новосибирске. Число Маха набегающего потока в этих экспериментах изменялось в диапазоне 2 < М < 4, число Рейнольд­са – 25 10 6 < Re < 56 10 6 , а угол атаки – в диапазоне – 3° < α < 10°. При этих параметрах измерялось распределение давлений, аэродинамические силы и моменты, а также выполнялась визуализация линий тока на поверхности модели.

Полученные результаты в числе прочего ясно демонстрируют образование вихрей на подветренной стороне. Панорамные картины течений на поверхности модели визуализировались посредством покрытия специальными жидкостями или маслосажевой смесью. В типичном примере маслосажевой визуализации видно, как поверхностные линии тока сворачивают внутрь от передней кромки крыла и стекаются в линию, ориентированную приблизительно в направлении течения. Наблюдаются также другие полосы, направленные в сторону центральной линии модели.

Эти четкие следы на подветренной стороне характеризуют поперечное течение, трехмерную структуру которого можно наблюдать с помощью метода лазерного ножа. С увеличением угла атаки поток воздуха перетекает с наветренной поверхности крыла на подветренную, формируя сложную вихревую систему. Отметим, что первичные вихри с пониженным давлением в ядре вносят положительный вклад в подъемную силу аппарата. Сам метод лазерного ножа основан на фотографировании когерентного излучения, рассеянного на вводимых в поток твердых или жидких микрочастицах, распределение концентрации которых обусловливается структурой исследуемых течений. Когерентный источник света формируется в виде тонкой световой плоскости, что, собственно, и дало название методу. Интересно, что с точки зрения обеспечения необходимой контрастности изображения очень эффективными оказываются микрочастицы обычной воды (туман).

ТЕНЕВОЙ МЕТОД ТЕПЛЕРА

Еще в 1867 г. немецкий ученый А. Теплер предложил метод обнаружения оптических неоднородностей в прозрачных средах, который до сих пор не потерял актуальности в науке и технике. В частности, он широко применяется для исследования распределения плотности воздушных потоков при обтекании моделей летательных аппаратов в аэродинамических трубах.
Оптическая схема одной из реализаций метода представлена на рисунке. Пучок лучей от щелевого источника света системой линз направляется через исследуемый объект и фокусируется на кромке непрозрачной ширмы (так называемый нож Фуко ). Если в исследуемом объекте нет оптических неоднородностей, то все лучи задерживаются ножом. При наличии неоднородностей лучи будут рассеиваться, и часть их, отклонившись, пройдет выше кромки ножа. Поставив за плоскостью ножа Фуко проекционный объектив, можно спроектировать эти лучи на экран (направить в фотокамеру) и получить изображение неоднородностей.
Рассмотренная простейшая схема позволяет визуализировать градиенты плотности среды , перпендикулярные кромке ножа, градиенты же плотности по другой координате приводят к смещению изображения вдоль кромки и не меняют освещенности экрана. Существуют различные модификации метода Теплера. Например, вместо ножа устанавливается оптический фильтр, состоящий из параллельных полосок разных цветов. Или используется круглая диафрагма с цветными секторами. В этом случае при отсутствии неоднородностей лучи из разных точек проходят через одно и то же место диафрагмы, поэтому все поле окрашено в один цвет. Появление неоднородно­стей обусловливает отклонение лучей, которые проходят через разные секторы, и изображения точек с различным отклонением света окрашиваются в соответствующие цвета

При определенных условиях ядра вихрей могут разрушаться, что уменьшает подъемную силу крыла. Этот процесс, называемый срывом вихря, развивается по типу «пузырь» или «спираль», визуальные различия между которыми демонстрирует фотография, сделанная с помощью впрыска флуоресцентной краски. Обычно пузырьковый режим срыва вихря предшествует распаду по спиральному типу.

Полезную информацию о спектрах сверхзвукового обтекания летательных аппаратов дает теневой метод Теплера . С его помощью визуализируются неоднородности в газовых потоках, при этом особенно хорошо видны скачки уплотнения и волны разрежения.

Разделение ступеней

Разделение несущей и орбитальной ступеней – одна из самых трудных задач, рассмотренных в ходе работы над проектом ELAC–EOS. В целях безопасности маневрирования этот этап полета требует особенно тщательного изучения. Численные исследования его различных фаз были проведены в центре SFB 255 при Техническом университете Мюнхена, а вся экспериментальная работа выполнена в Институте теоретической и прикладной механики СО РАН. Испытания в сверхзвуковой аэродинамической трубе T-313 включали в себя визуализацию обтекания полной конфигурации и измерения аэродинамических характеристик и поверхностных давлений в процессе разделения ступеней.

Модель нижней ступени ELAC 1C отличалась от первоначального варианта ELAC 1 отсеком небольшой глубины, в котором должна располагаться орбитальная ступень во время взлета и набора высоты. Компьютерное моделирование проводилось при числе Маха набегающего потока М = 4,04, числе Рейнольдса Re = 9,6 10 6 и нулевом угле атаки модели EOS.

Наблюдалось хорошее согласие между расчетными и экспериментальными данными, что подтверждает надежность численного решения при прогнозировании гиперзвуковых течений. Пример расчетной картины распределения чисел Маха (скоростей) в потоке во время процесса разделения представлен на этой странице. На обеих ступенях видны скачки уплотнения и локальные разрежения. У задней части конфигурации ELAC 1C в реальности разрежения не будет, поскольку там разместится гиперзвуковой прямоточный воздушно-реактивный двигатель.

В целом можно сказать, что исследования аэродинамической концепции двухступенчатой системы ELAC–EOS, инициированные Немецким исследовательским обществом DFG, оказались успешными. В результате обширного комплекса теоретических и экспериментальных работ, в которых участвовали научные центры Европы, Азии, Америки и Австралии, был выполнен полный расчет конфигурации, способной к горизонтальному взлету и посадке в стандартном аэропорту, решены аэродинамические задачи полета с низкими, сверхзвуковыми и особенно гиперзвуковыми скоростями.

В настоящее время ясно, что создание перспективного аэрокосмического транспорта требует еще детальных исследований по разработке гиперзвуковых воздушно-реактивных двигателей, надежно работающих в широком диапазоне скоростей полета, высокоточных систем управления процессами разделения ступеней и посадки орбитального модуля, новых высокотемпературных материалов и т.д. Решение всех этих сложных научно-технических задач невозможно без объединения усилий ученых разных стран. И опыт данного проекта только подтверждает: долговременное международное сотрудничество становится неотъемлемым элементом аэрокосмических исследований.

Литература

Kharitonov A.M., Krause E., Limberg W. et al. // J. Experiments in Fluids. 1999. V. 26. P. 423.

Brodetsky M.D., Kharitonov A.M., Krause E. et al. // J. Experiments in Fluids. 2000. V. 29. P. 592.

Brodetsky M.D., Kharitonov A.M., Krause E. et al. // Proc. at X Int. Conference on the Methods of Aerophysical Research. Novosibirsk. 2000. V. 1. P. 53.

Krause E., Brodetsky M.D., Kharitonov A.M. // Proc. at WFAM Congress. Chicago, 2000.

Бродецкий М.Д., Краузе Э., Никифоров С.Б. и др. // ПМТФ. 2001. Т. 42. С. 68.

Мы уже давно привыкли к наличию остановок общественного транспорта неподалеку от дома, к ежедневному отправлению от ближайшего вокзала десятков поездов, вылету из аэропортов самолетов. Пропади общедоступный транспорт - и привычный нам мир попросту рухнет! Но, привыкнув к удобству, мы начинаем требовать еще большего! Какое развитие нас ожидает?

Шоссе - трубы


Жуткий трафик - одна из ведущих проблем всех мегаполисов. Причиной их нередко является не только плохая организация транспортных развязок и магистралей, но и метеоусловия. Зачем ходить далеко: российские снегопады нередко приводят к коллапсам на дорогах.

Одно их наиболее эффективных решений - сокрытие основной части потоков транспорта под землей. Количество и размеры автомобильных туннелей с годами лишь растет. Но обходятся они дорого, да и ограничены в развитии ландшафтом. Эти проблемы можно решить, заменив тоннели на трубы!

Генри Лью, инженер и строитель из Америки, уже предложил свою разработку трубопровода для транспорта. По нему можно будет пересылать движимые электричеством крупные грузовые контейнеры. Рассматривали его проект для применения в Нью-Йорке, известном своими огромными пробками. Лишь в этом городе перенос грузовых перевозок в трубы сократит движение автомобилей лишь за год на десяток миллиардов миль. В итоге улучшится экологическая обстановка, снизится нагрузка на трассы мегаполиса. Про сохранность и своевременность доставки грузов также не следует забывать.

Перевозить в таких трубопроводах возможно также и людей. Подобную пассажирскую транспортную систему предложил Элон Маск, американский миллионер. В «Гиперпетлю» Маска войдет система трубопроводов, размещенных на эстакадах, диаметр которых превысит пару метров. В них планируется поддерживать низкое давление. В трубах планируется перемещение капсул, парящих чуть выше дна благодаря закачанному туда воздуху. Скорость капсул, благодаря электромагнитному импульсу, может достигать шести сотен километров за полчаса.

Полеты в поезде


Поезда будут развиваться, становясь все более вместительными и скоростными. Уже обсуждают невероятный по размаху проект трассы от Лондона до Пекина, подготовленный китайцами. Суперскоростную дорогу длиной в восемь - девять тысяч километров хотят построить к 2020-му году.

Поезда проедут под Ла-Маншем, далее - через Европу, Россию, Астану, Дальний Восток и Хабаровск. Оттуда - финальный переезд в Пекин. На всю дорогу потребуется пара суток, предел скорости - 320 км/ч. Отметим здесь, что российский «Сапсан» разгоняется лишь до 250 км/ч.

Но и эта скорость - не предел! Поезд «Маглев», названный от словосочетания Magnetic Levitation, запросто достигает скорости движения 581 км/ч. Поддерживаемый магнитным полем в воздухе, он летит над рельсами, а не едет по ним. В настоящее время эти поезда - редкая экзотика. Но в будущем такую технологию можно и развивать.

Автомобиль под водой: нереально, но он есть!


Революцию ждут и в водном транспорте. Эксперты исследуют проекты подводных скоростных аппаратов, а также подводных мотоциклов. Что уж говорить об индивидуальных подводных лодках!

Организованный в Швейцарии проект под названием sQuba создан для разработки оригинального автомобиля, умеющего съезжать в воду прямо с трассы и, двигаясь по волнам, даже погружаться в них! Затем машина может запросто вернуться на сушу, продолжив движение по дороге.

Конструкторы новинки были вдохновлены одной из кинолент о Джеймсе Бонде. Реальный подводный автомобиль, выставлялся в Женевском автосалоне в виде открытого спорткара. Эта модель очень легкая и позволяет экипажу покидать авто в случае опасности.

Движение под водой обеспечивается парой винтов, находящихся под задним бампером, а также - парой поворотных водометов около передних колесных арок. Все это работает при помощи электромоторов. Конечно, придется добавлять в модель водоустойчивый колпак, чтобы водитель и пассажиры не промокали.

Готовы отправляться в космос?


Авиация, не отставая от прочих видов транспорта, активно развивается. Отказавшись от сверхзвуковых лайнеров вроде «Конкорда», она решилась выйти в открытый космос. Британские конструкторы работают над космолетом, или иначе - орбитальным самолетом, под названием «Скайлон».

Он сможет подниматься на гибридном двигателе с аэродрома и достигать гиперзвуковой скорости, она превышает звуковую более, чем в пять раз. Добравшись до высоты в 26 километров, он перейдет на питание кислородом из своих же баков, а затем выйдет в космос. Приземление - подобно приземлению самолета. То есть никаких внешних ускорителей, разгонных ступеней или топливных сбрасываемых баков. На весь рейс понадобится лишь пара двигателей.

Работают пока над беспилотной версией «Скайлона». Такой космический носитель сможет вывести на орбиту 12 тонн груза. Заметим здесь, что «Союз», российская ракета, справляется лишь с семью тоннами. Использовать же космолет, в отличие от ракеты можно и многократно. В итоге стоимость доставок снизится в 15 раз.

Параллельно конструкторы размышляют над пилотируемым вариантом. Изменив конструкцию грузового отсека, создав системы безопасности и сделав иллюминаторы можно перевезти три сотни пассажиров. За четыре часа они обогнут всю планету! Экспериментальную модель запустят уже в 2019-ом году.

Удивительно, но все перечисленные нами виды транспорта футурологи описывали еще на заре двадцатого столетия. Они надеялись, что реализация их не за горами. Со сроками они ошиблись, пока все находится на стадии разработки. Но у нас есть отличная возможность - стать в будущем пассажиром одного из вышеперечисленных чудес техники.